Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Neuroimage Clin ; 42: 103585, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38531165

RESUMEN

Resting state functional magnetic resonance imaging (rsfMRI) provides researchers and clinicians with a powerful tool to examine functional connectivity across large-scale brain networks, with ever-increasing applications to the study of neurological disorders, such as traumatic brain injury (TBI). While rsfMRI holds unparalleled promise in systems neurosciences, its acquisition and analytical methodology across research groups is variable, resulting in a literature that is challenging to integrate and interpret. The focus of this narrative review is to address the primary methodological issues including investigator decision points in the application of rsfMRI to study the consequences of TBI. As part of the ENIGMA Brain Injury working group, we have collaborated to identify a minimum set of recommendations that are designed to produce results that are reliable, harmonizable, and reproducible for the TBI imaging research community. Part one of this review provides the results of a literature search of current rsfMRI studies of TBI, highlighting key design considerations and data processing pipelines. Part two outlines seven data acquisition, processing, and analysis recommendations with the goal of maximizing study reliability and between-site comparability, while preserving investigator autonomy. Part three summarizes new directions and opportunities for future rsfMRI studies in TBI patients. The goal is to galvanize the TBI community to gain consensus for a set of rigorous and reproducible methods, and to increase analytical transparency and data sharing to address the reproducibility crisis in the field.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38270528

RESUMEN

MAIN OBJECTIVE: Cognitive difficulties are some of the most frequently experienced symptoms following mild-to-moderate traumatic brain injuries (TBIs). There is meta-analytic evidence that cognitive rehabilitation improves cognitive functioning after TBI in nonveteran populations but not specifically within the veteran and service member (V/SM) population. The purpose of the current meta-analysis was to examine the effect of cognitive rehabilitation interventions for V/SMs with a history of mild-to-moderate TBI. DESIGN AND MAIN MEASURES: This meta-analysis was preregistered with PROSPERO (CRD42021262902) and used the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) checklist for reporting guidelines. Inclusion criteria required studies to have (1) randomized controlled trials; (2) used adult participants (aged 18 years or older) who were US veterans or active-duty service members who had a history of mild-to-moderate TBI; (3) cognitive rehabilitation treatments designed to improve cognition and/or everyday functioning; (4) used objective neuropsychological testing as a primary outcome measure; and (5) been published in English. At least 2 reviewers independently screened all identified abstracts and full-text articles and coded demographic and effect size data. The final search was run on February 24, 2023, using 4 databases (PubMed, PsycINFO, Web of Science, and Google Scholar). Study quality and bias were examined using the revised Cochrane Risk-of-Bias Tool for Randomized Trials. RESULTS: We identified 8 articles meeting full criteria (total participants = 564; 97% of whom had a history of mild TBI). Compared with control groups, participants showed a small, but significant, improvement in overall objective neuropsychological functioning after cognitive rehabilitation interventions. Interventions focusing on teaching strategies had a larger effect size than did those focusing on drill-and-practice approaches for both objective neuropsychological test performance and performance-based measures of functional capacity. CONCLUSION: There is evidence of cognitive improvement in V/SMs with TBI histories after participation in cognitive rehabilitation. Clinician-administered interventions focusing on teaching strategies may yield the greatest cognitive improvement in this population.

3.
JAMA Netw Open ; 6(11): e2343410, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37966838

RESUMEN

Importance: Traumatic brain injury (TBI) is known to cause widespread neural disruption in the cerebrum. However, less is known about the association of TBI with cerebellar structure and how such changes may alter executive functioning. Objective: To investigate alterations in subregional cerebellum volume and cerebral white matter microstructure after pediatric TBI and examine subsequent changes in executive function. Design, Setting, and Participants: This retrospective cohort study combined 12 data sets (collected between 2006 and 2020) from 9 sites in the Enhancing Neuroimaging Genetics Through Meta-Analysis Consortium Pediatric TBI working group in a mega-analysis of cerebellar structure. Participants with TBI or healthy controls (some with orthopedic injury) were recruited from trauma centers, clinics, and institutional trauma registries, some of which were followed longitudinally over a period of 0.7 to 1.9 years. Healthy controls were recruited from the surrounding community. Data analysis occurred from October to December 2022. Exposure: Accidental mild complicated-severe TBI (msTBI) for those in the TBI group. Some controls received a diagnosis of orthopedic injury. Main Outcomes and Measures: Volume of 18 cerebellar lobules and vermal regions were estimated from 3-dimensional T1-weighted magnetic resonance imaging (MRI) scans. White matter organization in 28 regions of interest was assessed with diffusion tensor MRI. Executive function was measured by parent-reported scores from the Behavior Rating Inventory of Executive Functioning. Results: A total of 598 children and adolescents (mean [SD] age, 14.05 [3.06] years; range, 5.45-19.70 years; 386 male participants [64.5%]; 212 female participants [35.5%]) were included in the study, with 314 participants in the msTBI group, and 284 participants in the non-TBI group (133 healthy individuals and 151 orthopedically injured individuals). Significantly smaller total cerebellum volume (d = -0.37; 95% CI, -0.52 to -0.22; P < .001) and subregional cerebellum volumes (eg, corpus medullare; d = -0.43; 95% CI, -0.58 to -0.28; P < .001) were observed in the msTBI group. These alterations were primarily seen in participants in the chronic phase (ie, >6 months postinjury) of injury (total cerebellar volume, d = -0.55; 95% CI, -0.75 to -0.35; P < .001). Smaller cerebellum volumes were associated with higher scores on the Behavior Rating Inventory of Executive Functioning Global Executive Composite score (ß = -208.9 mm3; 95% CI, -319.0 to -98.0 mm3; P = .008) and Metacognition Index score (ß = -202.5 mm3; 95% CI, -319.0 to -85.0 mm3; P = .02). In a subset of 185 participants with longitudinal data, younger msTBI participants exhibited cerebellum volume reductions (ß = 0.0052 mm3; 95% CI, 0.0013 to 0.0090 mm3; P = .01), and older participants slower growth rates. Poorer white matter organization in the first months postinjury was associated with decreases in cerebellum volume over time (ß=0.52 mm3; 95% CI, 0.19 to 0.84 mm3; P = .005). Conclusions and Relevance: In this cohort study of pediatric msTBI, our results demonstrated robust cerebellar volume alterations associated with pediatric TBI, localized to the posterior lobe. Furthermore, longitudinal cerebellum changes were associated with baseline diffusion tensor MRI metrics, suggesting secondary cerebellar atrophy. These results provide further understanding of secondary injury mechanisms and may point to new opportunities for intervention.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Adolescente , Humanos , Niño , Femenino , Masculino , Estudios de Cohortes , Estudios Retrospectivos , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Atrofia
4.
Mil Med ; 188(Suppl 6): 124-133, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37948207

RESUMEN

INTRODUCTION: Because chronic difficulties with cognition and well-being are common after mild traumatic brain injury (mTBI) and aerobic physical activity and exercise (PAE) is a potential treatment and mitigation strategy, we sought to determine their relationship in a large sample with remote mTBI. MATERIALS AND METHODS: The Long-Term Impact of Military-Relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium prospective longitudinal study is a national multicenter observational study of combat-exposed service members and veterans. Study participants with positive mTBI histories (n = 1,087) were classified as "inactive" (23%), "insufficiently active" (46%), "active" (19%), or "highly active" (13%) based on the aerobic PAE level. The design was a cross-sectional analysis with multivariable regression. PAE was reported on the Behavioral Risk Factor Surveillance System. Preselected primary outcomes were seven well-validated cognitive performance tests of executive function, learning, and memory: The California Verbal Learning Test-Second Edition Long-Delay Free Recall and Total Recall, Brief Visuospatial Memory Test-Revised Total Recall, Trail-Making Test-Part B, and NIH Toolbox for the Assessment of Neurological Behavior and Function Cognition Battery Picture Sequence Memory, Flanker, and Dimensional Change Card Sort tests. Preselected secondary outcomes were standardized self-report questionnaires of cognitive functioning, life satisfaction, and well-being. RESULTS: Across the aerobic activity groups, cognitive performance tests were not significantly different. Life satisfaction and overall health status scores were higher for those engaging in regular aerobic activity. Exploratory analyses also showed better working memory and verbal fluency with higher aerobic activity levels. CONCLUSIONS: An association between the aerobic activity level and the preselected primary cognitive performance outcome was not demonstrated using this study sample and methods. However, higher aerobic activity levels were associated with better subjective well-being. This supports a clinical recommendation for regular aerobic exercise among persons with chronic or remote mTBI. Future longitudinal analyses of the exercise-cognition relationship in chronic mTBI populations are recommended.


Asunto(s)
Conmoción Encefálica , Veteranos , Humanos , Conmoción Encefálica/epidemiología , Estudios Transversales , Estudios Prospectivos , Estudios Longitudinales , Pruebas Neuropsicológicas , Cognición , Veteranos/psicología
5.
J Stud Alcohol Drugs ; 84(4): 585-597, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36971714

RESUMEN

OBJECTIVE: Chronic substance use and its effects on brain function and structure has long been of interest to clinicians and researchers. Prior cross-sectional comparisons of diffusion tensor imaging (DTI) metrics have suggested deleterious effects of chronic substance use (i.e., cocaine use) on white matter coherence. However, it is unclear how these effects may replicate across geographic regions when examined with similar technologies. In this study, we sought to conduct a replication of previous work in this area and determine whether there are any patterns of persistent differences in white matter microstructure between individuals with a history of cocaine use disorder (CocUD, according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) and healthy controls. METHOD: A total of 46 participants (21 healthy controls, 25 chronic cocaine users) were recruited from the Richmond, Virginia metropolitan area. Information regarding past and current substance use was collected from all participants. Participants also completed structural and DTI scans. RESULTS: Consistent with previous DTI studies, significant differences were found between fractional anisotropy (FA) and axial diffusivity (AD) CocUD and controls, with CocUD showing lower FA and AD in the right inferior and superior longitudinal fasciculus, the genu, body, and splenium of the corpus callosum, and the anterior, posterior, and superior corona radiata, among several other regions. These differences were not significant for other diffusivity metrics. Lifetime alcohol consumption was greater in the CocUD group, but lifetime alcohol consumption did not show a significant linear relationship with any of the DTI metrics in within-group regression analyses. CONCLUSIONS: These data align with previously reported declines in white matter coherence in chronic cocaine users. However, it is less clear whether comorbid alcohol consumption results in an additive deleterious effect on white matter microstructure.


Asunto(s)
Trastornos Relacionados con Cocaína , Imagen de Difusión Tensora , Sustancia Blanca , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Consumo de Bebidas Alcohólicas/epidemiología , Consumo de Bebidas Alcohólicas/patología , Bebidas Alcohólicas/análisis , Anisotropía , Estudios de Casos y Controles , Trastornos Relacionados con Cocaína/diagnóstico por imagen , Trastornos Relacionados con Cocaína/epidemiología , Trastornos Relacionados con Cocaína/patología , Comorbilidad , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/patología , Análisis de Regresión , Virginia/epidemiología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Enfermedad Crónica/epidemiología
6.
Hum Brain Mapp ; 44(5): 1888-1900, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36583562

RESUMEN

Traumatic brain injury (TBI) in military populations can cause disruptions in brain structure and function, along with cognitive and psychological dysfunction. Diffusion magnetic resonance imaging (dMRI) can detect alterations in white matter (WM) microstructure, but few studies have examined brain asymmetry. Examining asymmetry in large samples may increase sensitivity to detect heterogeneous areas of WM alteration in mild TBI. Through the Enhancing Neuroimaging Genetics Through Meta-Analysis Military-Relevant Brain Injury working group, we conducted a mega-analysis of neuroimaging and clinical data from 16 cohorts of Active Duty Service Members and Veterans (n = 2598). dMRI data were processed together along with harmonized demographic, injury, psychiatric, and cognitive measures. Fractional anisotropy in the cingulum showed greater asymmetry in individuals with deployment-related TBI, driven by greater left lateralization in TBI. Results remained significant after accounting for potentially confounding variables including posttraumatic stress disorder, depression, and handedness, and were driven primarily by individuals whose worst TBI occurred before age 40. Alterations in the cingulum were also associated with slower processing speed and poorer set shifting. The results indicate an enhancement of the natural left laterality of the cingulum, possibly due to vulnerability of the nondominant hemisphere or compensatory mechanisms in the dominant hemisphere. The cingulum is one of the last WM tracts to mature, reaching peak FA around 42 years old. This effect was primarily detected in individuals whose worst injury occurred before age 40, suggesting that the protracted development of the cingulum may lead to increased vulnerability to insults, such as TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Sustancia Blanca , Humanos , Adulto , Sustancia Blanca/patología , Pruebas Neuropsicológicas , Lesiones Encefálicas/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/patología , Encéfalo
7.
Behav Res Methods ; 55(6): 2813-2837, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-35953660

RESUMEN

Researcher degrees of freedom can affect the results of hypothesis tests and consequently, the conclusions drawn from the data. Previous research has documented variability in accuracy, speed, and documentation of output across various statistical software packages. In the current investigation, we conducted Pearson's chi-square test of independence, Spearman's rank-ordered correlation, Kruskal-Wallis one-way analysis of variance, Wilcoxon Mann-Whitney U rank-sum tests, and Wilcoxon signed-rank tests, along with estimates of skewness and kurtosis, on large, medium, and small samples of real and simulated data in SPSS, SAS, Stata, and R and compared the results with those obtained through hand calculation using the raw computational formulas. Multiple inconsistencies were found in the results produced between statistical packages due to algorithmic variation, computational error, and statistical output. The most notable inconsistencies were due to algorithmic variations in the computation of Pearson's chi-square test conducted on 2 × 2 tables, where differences in p-values reported by different software packages ranged from .005 to .162, largely as a function of sample size. We discuss how such inconsistencies may influence the conclusions drawn from the results of statistical analyses depending on the statistical software used, and we urge researchers to analyze their data across multiple packages to check for inconsistencies and report details regarding the statistical procedure used for data analysis.


Asunto(s)
Proyectos de Investigación , Programas Informáticos , Humanos , Tamaño de la Muestra , Distribución de Chi-Cuadrado , Correlación de Datos
8.
Neuropsychol Rev ; 33(1): 42-121, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-33721207

RESUMEN

There is evidence that diffusion-weighted imaging (DWI) is able to detect tissue alterations following mild traumatic brain injury (mTBI) that may not be observed on conventional neuroimaging; however, findings are often inconsistent between studies. This systematic review assesses patterns of differences in DWI metrics between those with and without a history of mTBI. A PubMed literature search was performed using relevant indexing terms for articles published prior to May 14, 2020. Findings were limited to human studies using DWI in mTBI. Articles were excluded if they were not full-length, did not contain original data, if they were case studies, pertained to military populations, had inadequate injury severity classification, or did not report post-injury interval. Findings were reported independently for four subgroups: acute/subacute pediatric mTBI, acute/subacute adult mTBI, chronic adult mTBI, and sport-related concussion, and all DWI acquisition and analysis methods used were included. Patterns of findings between studies were reported, along with strengths and weaknesses of the current state of the literature. Although heterogeneity of sample characteristics and study methods limited the consistency of findings, alterations in DWI metrics were most commonly reported in the corpus callosum, corona radiata, internal capsule, and long association pathways. Many acute/subacute pediatric studies reported higher FA and lower ADC or MD in various regions. In contrast, acute/subacute adult studies most commonly indicate lower FA within the context of higher MD and RD. In the chronic phase of recovery, FA may remain low, possibly indicating overall demyelination or Wallerian degeneration over time. Longitudinal studies, though limited, generally indicate at least a partial normalization of DWI metrics over time, which is often associated with functional improvement. We conclude that DWI is able to detect structural mTBI-related abnormalities that may persist over time, although future DWI research will benefit from larger samples, improved data analysis methods, standardized reporting, and increasing transparency.


Asunto(s)
Conmoción Encefálica , Sustancia Blanca , Adulto , Humanos , Niño , Conmoción Encefálica/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Neuroimagen , Estudios Longitudinales , Encéfalo/diagnóstico por imagen
9.
Mil Med ; 188(9-10): e3143-e3151, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36029468

RESUMEN

INTRODUCTION: Veterans and service members (V/SM) may have more risk factors for arrest and felony incarceration (e.g., posttraumatic stress disorder and at-risk substance use) but also more protective factors (e.g., access to health care) to mitigate behaviors that may lead to arrest. As such, understanding which factors are associated with criminal justice involvement among V/SM could inform prevention and treatment efforts. The current study examined relationships between lifetime history of arrests and felony incarceration and sociodemographic, psychological, and brain injury characteristics factors among combat V/SM. MATERIALS AND METHODS: The current study was a secondary data analysis from the Chronic Effects of Neurotrauma Consortium multicenter cohort study, approved by local institutional review boards at each study site. Participants were V/SM (N = 1,540) with combat exposure (19% active duty at time of enrollment) who were recruited from eight Department of Veterans Affairs and DoD medical centers and completed a baseline assessment. Participants were predominantly male (87%) and white (72%), with a mean age of 40 years (SD = 9.7). Most (81%) reported a history of at least one mild traumatic brain injury, with one-third of those experiencing three or more mild traumatic brain injuries (33%). Participants completed a self-report measure of lifetime arrest and felony incarceration history, a structured interview for all potential concussive events, the post-traumatic stress disorder checklist for Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), and the Alcohol Use Disorders Identification Test-Consumption. Three groups were compared on self-reported level of lifetime history of criminal justice system involvement: (1) no history of arrest or incarceration (65%); (2) history of arrest but no felony incarceration (32%); and (3) history of felony incarceration (3%). RESULTS: Ordinal regression analyses revealed that hazardous alcohol consumption (ß = .44, P < .001; odds ratio = 1.56) was positively associated with increased criminal justice involvement after adjusting for all other variables. Being married or partnered (ß = -.44, P < .001; odds ratio = 0.64) was negatively associated with decreased criminal justice involvement. CONCLUSIONS: The rate of lifetime arrest (35%) in this V/SM sample was consistent with rates of arrests in the U.S. general population. One modifiable characteristic associated with lifetime arrest and felony incarceration was hazardous alcohol consumption. Alcohol use should be a top treatment target for V/SM at risk for arrest and those with history of criminal justice involvement.


Asunto(s)
Alcoholismo , Conmoción Encefálica , Veteranos , Humanos , Masculino , Adulto , Femenino , Veteranos/psicología , Salud Mental , Derecho Penal , Estudios de Cohortes
10.
Hum Brain Mapp ; 43(14): 4492-4507, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35678552

RESUMEN

Individual neuroanatomy can influence motor responses to transcranial magnetic stimulation (TMS) and corticomotor excitability after intermittent theta burst stimulation (iTBS). The purpose of this study was to examine the relationship between individual neuroanatomy and both TMS response measured using resting motor threshold (RMT) and iTBS measured using motor evoked potentials (MEPs) targeting the biceps brachii and first dorsal interosseus (FDI). Ten nonimpaired individuals completed sham-controlled iTBS sessions and underwent MRI, from which anatomically accurate head models were generated. Neuroanatomical parameters established through fiber tractography were fiber tract surface area (FTSA), tract fiber count (TFC), and brain scalp distance (BSD) at the point of stimulation. Cortical magnetic field induced electric field strength (EFS) was obtained using finite element simulations. A linear mixed effects model was used to assess effects of these parameters on RMT and iTBS (post-iTBS MEPs). FDI RMT was dependent on interactions between EFS and both FTSA and TFC. Biceps RMT was dependent on interactions between EFS and and both FTSA and BSD. There was no groupwide effect of iTBS on the FDI but individual changes in corticomotor excitability scaled with RMT, EFS, BSD, and FTSA. iTBS targeting the biceps was facilitatory, and dependent on FTSA and TFC. MRI-based measures of neuroanatomy highlight how individual anatomy affects motor system responses to different TMS paradigms and may be useful for selecting appropriate motor targets when designing TMS based therapies.


Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Potenciales Evocados Motores/fisiología , Humanos , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Neuroanatomía , Plasticidad Neuronal/fisiología , Ritmo Teta/fisiología
11.
Neurology ; 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050006

RESUMEN

OBJECTIVE: Our study addressed aims: (1) test the hypothesis that moderate-severe TBI in pediatric patients is associated with widespread white matter (WM) disruption; (2) test the hypothesis that age and sex impact WM organization after injury; and (3) examine associations between WM organization and neurobehavioral outcomes. METHODS: Data from ten previously enrolled, existing cohorts recruited from local hospitals and clinics were shared with the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric msTBI working group. We conducted a coordinated analysis of diffusion MRI (dMRI) data using the ENIGMA dMRI processing pipeline. RESULTS: Five hundred and seven children and adolescents (244 with complicated mild to severe TBI [msTBI] and 263 controls) were included. Patients were clustered into three post-injury intervals: acute/subacute - <2 months, post-acute - 2-6 months, chronic - 6+ months. Outcomes were dMRI metrics and post-injury behavioral problems as indexed by the Child Behavior Checklist (CBCL). Our analyses revealed altered WM diffusion metrics across multiple tracts and all post-injury intervals (effect sizes ranging between d=-0.5 to -1.3). Injury severity is a significant contributor to the extent of WM alterations but explained less variance in dMRI measures with increasing time post-injury. We observed a sex-by-group interaction: females with TBI had significantly lower fractional anisotropy in the uncinate fasciculus than controls (𝞫=0.043), which coincided with more parent-reported behavioral problems (𝞫=-0.0027). CONCLUSIONS: WM disruption after msTBI is widespread, persistent, and influenced by demographic and clinical variables. Future work will test techniques for harmonizing neurocognitive data, enabling more advanced analyses to identify symptom clusters and clinically-meaningful patient subtypes.

12.
Brain Imaging Behav ; 15(2): 585-613, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33409819

RESUMEN

Traumatic brain injury (TBI) is common among military personnel and the civilian population and is often followed by a heterogeneous array of clinical, cognitive, behavioral, mood, and neuroimaging changes. Unlike many neurological disorders that have a characteristic abnormal central neurologic area(s) of abnormality pathognomonic to the disorder, a sufficient head impact may cause focal, multifocal, diffuse or combination of injury to the brain. This inconsistent presentation makes it difficult to establish or validate biological and imaging markers that could help improve diagnostic and prognostic accuracy in this patient population. The purpose of this manuscript is to describe both the challenges and opportunities when conducting military-relevant TBI research and introduce the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Military Brain Injury working group. ENIGMA is a worldwide consortium focused on improving replicability and analytical power through data sharing and collaboration. In this paper, we discuss challenges affecting efforts to aggregate data in this patient group. In addition, we highlight how "big data" approaches might be used to understand better the role that each of these variables might play in the imaging and functional phenotypes of TBI in Service member and Veteran populations, and how data may be used to examine important military specific issues such as return to duty, the late effects of combat-related injury, and alteration of the natural aging processes.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Personal Militar , Trastornos por Estrés Postraumático , Veteranos , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
13.
Brain Imaging Behav ; 15(2): 475-503, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33405096

RESUMEN

Intimate partner violence includes psychological aggression, physical violence, sexual violence, and stalking from a current or former intimate partner. Past research suggests that exposure to intimate partner violence can impact cognitive and psychological functioning, as well as neurological outcomes. These seem to be compounded in those who suffer a brain injury as a result of trauma to the head, neck or body due to physical and/or sexual violence. However, our understanding of the neurobehavioral and neurobiological effects of head trauma in this population is limited due to factors including difficulty in accessing/recruiting participants, heterogeneity of samples, and premorbid and comorbid factors that impact outcomes. Thus, the goal of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium Intimate Partner Violence Working Group is to develop a global collaboration that includes researchers, clinicians, and other key community stakeholders. Participation in the working group can include collecting harmonized data, providing data for meta- and mega-analysis across sites, or stakeholder insight on key clinical research questions, promoting safety, participant recruitment and referral to support services. Further, to facilitate the mega-analysis of data across sites within the working group, we provide suggestions for behavioral surveys, cognitive tests, neuroimaging parameters, and genetics that could be used by investigators in the early stages of study design. We anticipate that the harmonization of measures across sites within the working group prior to data collection could increase the statistical power in characterizing how intimate partner violence-related head trauma impacts long-term physical, cognitive, and psychological health.


Asunto(s)
Traumatismos Craneocerebrales , Violencia de Pareja , Ansiedad , Traumatismos Craneocerebrales/diagnóstico por imagen , Traumatismos Craneocerebrales/epidemiología , Humanos , Relaciones Interpersonales , Imagen por Resonancia Magnética
14.
Hippocampus ; 31(4): 408-421, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33432734

RESUMEN

Episodic memory depends on the computational process of pattern separation in order to establish distinct memory representations of similar episodes. Studies of pattern separation in humans rely on mnemonic discrimination tasks, which have been shown to tax hippocampal-dependent pattern separation. Although previous neuroimaging research has focused on hippocampal processing, little is known about how other brain regions, known to be involved in recognition memory performance, are involved in mnemonic discrimination tasks. Conversely, neuroimaging studies of pattern separation with whole-brain coverage lack spatial resolution to localize activation to hippocampal subfields. In this study, 48 healthy young adult participants underwent whole-brain high-resolution functional MRI (fMRI) scanning while completing a mnemonic discrimination task. A priori region-of-interest analyses revealed activation patterns consistent with pattern separation in distinct hippocampal subregions, particularly in the subiculum. Connectivity analyses revealed a network of cortical regions consistent with the memory retrieval network where fMRI activation was correlated with hippocampal activation. An exploratory whole-brain analysis revealed widespread activation differentially associated with performance of the mnemonic discrimination task. Taken together, these results suggest that a network of brain regions contribute to mnemonic discrimination performance, with the hippocampus and parahippocampal cortex as a hub in the network displaying clear signals consistent with pattern separation and regions such as the dorsal medial prefrontal cortex particularly important for successful lure discrimination.


Asunto(s)
Hipocampo , Memoria Episódica , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Hipocampo/diagnóstico por imagen , Hipocampo/fisiología , Humanos , Imagen por Resonancia Magnética , Reconocimiento en Psicología/fisiología , Adulto Joven
15.
Brain Imaging Behav ; 15(2): 576-584, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32720179

RESUMEN

Sport-related brain injury is very common, and the potential long-term effects include a wide range of neurological and psychiatric symptoms, and potentially neurodegeneration. Around the globe, researchers are conducting neuroimaging studies on primarily homogenous samples of athletes. However, neuroimaging studies are expensive and time consuming, and thus current findings from studies of sport-related brain injury are often limited by small sample sizes. Further, current studies apply a variety of neuroimaging techniques and analysis tools which limit comparability among studies. The ENIGMA Sports Injury working group aims to provide a platform for data sharing and collaborative data analysis thereby leveraging existing data and expertise. By harmonizing data from a large number of studies from around the globe, we will work towards reproducibility of previously published findings and towards addressing important research questions with regard to diagnosis, prognosis, and efficacy of treatment for sport-related brain injury. Moreover, the ENIGMA Sports Injury working group is committed to providing recommendations for future prospective data acquisition to enhance data quality and scientific rigor.


Asunto(s)
Traumatismos en Atletas , Conmoción Encefálica , Lesiones Encefálicas , Traumatismos en Atletas/diagnóstico por imagen , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/epidemiología , Conmoción Encefálica/etiología , Humanos , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados
16.
Brain Imaging Behav ; 15(2): 555-575, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32734437

RESUMEN

Traumatic brain injury (TBI) is a major cause of death and disability in children in both developed and developing nations. Children and adolescents suffer from TBI at a higher rate than the general population, and specific developmental issues require a unique context since findings from adult research do not necessarily directly translate to children. Findings in pediatric cohorts tend to lag behind those in adult samples. This may be due, in part, both to the smaller number of investigators engaged in research with this population and may also be related to changes in safety laws and clinical practice that have altered length of hospital stays, treatment, and access to this population. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric Moderate/Severe TBI (msTBI) group aims to advance research in this area through global collaborative meta-analysis of neuroimaging data. In this paper, we discuss important challenges in pediatric TBI research and opportunities that we believe the ENIGMA Pediatric msTBI group can provide to address them. With the paucity of research studies examining neuroimaging biomarkers in pediatric patients with TBI and the challenges of recruiting large numbers of participants, collaborating to improve statistical power and to address technical challenges like lesions will significantly advance the field. We conclude with recommendations for future research in this field of study.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Adolescente , Adulto , Biomarcadores , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Niño , Humanos , Neuroimagen
17.
Brain Imaging Behav ; 15(2): 526-554, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32797398

RESUMEN

The global burden of mortality and morbidity caused by traumatic brain injury (TBI) is significant, and the heterogeneity of TBI patients and the relatively small sample sizes of most current neuroimaging studies is a major challenge for scientific advances and clinical translation. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Adult moderate/severe TBI (AMS-TBI) working group aims to be a driving force for new discoveries in AMS-TBI by providing researchers world-wide with an effective framework and platform for large-scale cross-border collaboration and data sharing. Based on the principles of transparency, rigor, reproducibility and collaboration, we will facilitate the development and dissemination of multiscale and big data analysis pipelines for harmonized analyses in AMS-TBI using structural and functional neuroimaging in combination with non-imaging biomarkers, genetics, as well as clinical and behavioral measures. Ultimately, we will offer investigators an unprecedented opportunity to test important hypotheses about recovery and morbidity in AMS-TBI by taking advantage of our robust methods for large-scale neuroimaging data analysis. In this consensus statement we outline the working group's short-term, intermediate, and long-term goals.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Adulto , Encéfalo/diagnóstico por imagen , Humanos , Neuroimagen , Reproducibilidad de los Resultados
20.
Hippocampus ; 28(2): 108-120, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29149767

RESUMEN

Effective memory representations must be specific to prevent interference between episodes that may overlap in terms of place, time, or items present. Pattern separation, a computational process performed by the hippocampus, overcomes this interference by establishing nonoverlapping memory representations. Although it is widely accepted that declarative memories are consolidated during sleep, the effects of sleep on pattern separation have yet to be elucidated. We used whole-brain, high-resolution functional neuroimaging to investigate the effects of sleep on a task that places high demands on pattern separation. Sleep had a selective effect on memory specificity and not general recognition memory. Activity in brain regions related to memory retrieval and cognitive control demonstrated an interaction between sleep and delay. Surprisingly, there was no effect of sleep on hippocampal activity using a group-level analysis. To further understand the role of the hippocampus on our task, we performed a representational similarity analysis, which showed that hippocampal activation was biased toward pattern separation relative to cortical activation and that this bias increased following a delay (regardless of sleep). Cortical activation, conversely, was biased toward pattern completion and this bias was preferentially enhanced by sleep.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Memoria/fisiología , Sueño/fisiología , Adolescente , Adulto , Análisis de Varianza , Encéfalo/diagnóstico por imagen , Femenino , Hipocampo/diagnóstico por imagen , Hipocampo/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Oxígeno/sangre , Estimulación Luminosa , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...