Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(1)2023 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-38201278

RESUMEN

Targeted therapy resistance frequently develops in melanoma due to intratumor heterogeneity and epigenetic reprogramming. This also typically induces cross-resistance to immunotherapies. Whether this includes additional modes of therapy has not been fully assessed. We show that co-treatments of MAPKi with VSV-based oncolytics do not function in a synergistic fashion; rather, the MAPKis block infection. Melanoma resistance to vemurafenib further perturbs the cells' ability to be infected by oncolytic viruses. Resistance to vemurafenib can be induced by the loss of SOX10, a common proliferative marker in melanoma. The loss of SOX10 promotes a cross-resistant state by further inhibiting viral infection and replication. Analysis of RNA-seq datasets revealed an upregulation of interferon-stimulated genes (ISGs) in SOX10 knockout populations and targeted therapy-resistant cells. Interestingly, the induction of ISGs appears to be independent of type I IFN production. Overall, our data suggest that the pathway mediating oncolytic resistance is due to the loss of SOX10 during acquired drug resistance in melanoma.


Asunto(s)
Melanoma , Virus Oncolíticos , Virus ARN , Humanos , Virus Oncolíticos/genética , Melanoma/terapia , Vemurafenib , Epigenómica , Interferones , ARN
2.
iScience ; 25(12): 105524, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36437876

RESUMEN

SOX10 is a key regulator of melanoma progression and promotes a melanocytic/differentiated state. Here we identified melanoma cell lines lacking SOX10 expression which retain their in vivo growth capabilities. More importantly, we find that SOX10 can regulate T-cell infiltration in melanoma while also decreasing common cancer stem cell (CSC) properties. We show that SOX10 regulates CEACAM1, a surface protein with immunomodulatory properties. SOX10 directly binds to a distal CEACAM1 promoter region approximately 3-4kbps from the CEACAM1 transcriptional start site. Furthermore, we show that a SOX10-CEACAM1 axis can suppress CD8+ T-cell infiltration as well as reduce CSC pool within tumors, leading to reduced tumor growth. Overall, these results identify SOX10 as a direct regulator of CEACAM1, and uncover both a pro- and anti-tumorigenic roles for SOX10 in melanoma.

3.
Sci Adv ; 8(15): eabj3286, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35417234

RESUMEN

Trogocytosis modulates immune responses, with still unclear underlying molecular mechanisms. Using leukemia mouse models, we found that lymphocytes perform trogocytosis at high rates with tumor cells. While performing trogocytosis, both Natural Killer (NK) and CD8+ T cells acquire the checkpoint receptor PD-1 from leukemia cells. In vitro and in vivo investigation revealed that PD-1 on the surface of NK cells, rather than being endogenously expressed, was derived entirely from leukemia cells in a SLAM receptor-dependent fashion. PD-1 acquired via trogocytosis actively suppressed NK cell antitumor immunity. PD-1 trogocytosis was corroborated in patients with clonal plasma cell disorders, where NK cells that stained for PD-1 also stained for tumor cell markers. Our results, in addition to shedding light on a previously unappreciated mechanism underlying the presence of PD-1 on NK and cytotoxic T cells, reveal the immunoregulatory effect of membrane transfer occurring when immune cells contact tumor cells.


Asunto(s)
Leucemia , Neoplasias , Animales , Linfocitos T CD8-positivos , Humanos , Células Asesinas Naturales , Leucemia/metabolismo , Ratones , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo
4.
Biochim Biophys Acta Mol Cell Res ; 1868(2): 118917, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33259860

RESUMEN

Duchenne's muscular dystrophy (DMD) is a severe muscle wasting disorder characterized by the loss of dystrophin expression, muscle necrosis, inflammation and fibrosis. Ongoing muscle regeneration is impaired by persistent cytokine stress, further decreasing muscle function. Patients with DMD rarely survive beyond their early 20s, with cardiac and respiratory dysfunction being the primary cause of death. Despite an increase in our understanding of disease progression as well as promising preclinical animal models for therapeutic intervention, treatment options for muscular dystrophy remain limited and novel therapeutic targets are required. Many reports suggest that the TGFß signalling pathway is activated in dystrophic muscle and contributes to the pathology of DMD in part by impairing the differentiation of myoblasts into mature myofibers. Here, we show that in vitro knockdown of the Ste20-like kinase, SLK, can partially restore myoblast differentiation downstream of TGFß in a Smad2/3 independent manner. In an mdx model, we demonstrate that SLK is expressed at high levels in regenerating myofibers. Muscle-specific deletion of SLK reduced leukocyte infiltration, increased myogenin and utrophin expression and enhanced differentiation. This was accompanied by resistance to eccentric contraction-induced injury in slow fiber type-enriched soleus muscles. Finally, we found that these effects were partially dependent on the upregulation of p38 signalling. Collectively, these results demonstrate that SLK downregulation can restore some aspects of disease progression in DMD.


Asunto(s)
Técnicas de Inactivación de Genes , Sistema de Señalización de MAP Quinasas/genética , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Perros , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Distrofia Muscular de Duchenne/patología , Mioblastos/metabolismo , Miogenina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factor de Crecimiento Transformador beta/metabolismo
5.
Oncogene ; 39(23): 4592-4602, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32393835

RESUMEN

HER2 is overexpressed in 20-30% of all breast cancers and is associated with an invasive disease and poor clinical outcome. The Ste20-like kinase (SLK) is activated downstream of HER2/Neu and is required for efficient epithelial-to-mesenchymal transition, cell cycle progression, and migration in the mammary epithelium. Here we show that loss of SLK in a murine model of HER2/Neu-positive breast cancers significantly accelerates tumor onset and decreases overall survival. Transcriptional profiling of SLK knockout HER2/Neu-derived tumor cells revealed a strong induction in the triple-negative breast cancer marker, Sox10, accompanied by an increase in mammary stem/progenitor activity. Similarly, we demonstrate that SLK and Sox10 expression are inversely correlated in patient samples, with the loss of SLK and acquisition of Sox10 marking the triple-negative subtype. Furthermore, pharmacological inhibition of AKT reduces SLK-null tumor growth in vivo and is rescued by ectopic Sox10 expression, suggesting that Sox10 is a critical regulator of tumor growth downstream of SLK/AKT. These findings highlight a role for SLK in negatively regulating HER2-induced mammary tumorigenesis and provide mechanistic insight into the regulation of Sox10 expression in breast cancer.


Asunto(s)
Transformación Celular Neoplásica/patología , Proteínas Serina-Treonina Quinasas/genética , Receptor ErbB-2/metabolismo , Factores de Transcripción SOXE/genética , Neoplasias de la Mama Triple Negativas/patología , Animales , Transición Epitelial-Mesenquimal/genética , Femenino , Ratones , Ratones SCID , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Esferoides Celulares , Neoplasias de la Mama Triple Negativas/genética , Células Tumorales Cultivadas
6.
J Clin Invest ; 129(9): 3499-3510, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31478911

RESUMEN

Natural killer (NK) cells are innate cytotoxic lymphocytes involved in the surveillance and elimination of cancer. As we have learned more and more about the mechanisms NK cells employ to recognize and eliminate tumor cells, and how, in turn, cancer evades NK cell responses, we have gained a clear appreciation that NK cells can be harnessed in cancer immunotherapy. Here, we review the evidence for NK cells' critical role in combating transformed and malignant cells, and how cancer immunotherapies potentiate NK cell responses for therapeutic purposes. We highlight cutting-edge immunotherapeutic strategies in preclinical and clinical development such as adoptive NK cell transfer, chimeric antigen receptor-expressing NK cells (CAR-NKs), bispecific and trispecific killer cell engagers (BiKEs and TriKEs), checkpoint blockade, and oncolytic virotherapy. Further, we describe the challenges that NK cells face (e.g., postsurgical dysfunction) that must be overcome by these therapeutic modalities to achieve cancer clearance.


Asunto(s)
Inmunoterapia Adoptiva , Células Asesinas Naturales , Neoplasias , Animales , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Células Asesinas Naturales/trasplante , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia
7.
J Clin Invest ; 128(10): 4654-4668, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30198904

RESUMEN

Checkpoint blockade immunotherapy targeting the PD-1/PD-L1 inhibitory axis has produced remarkable results in the treatment of several types of cancer. Whereas cytotoxic T cells are known to provide important antitumor effects during checkpoint blockade, certain cancers with low MHC expression are responsive to therapy, suggesting that other immune cell types may also play a role. Here, we employed several mouse models of cancer to investigate the effect of PD-1/PD-L1 blockade on NK cells, a population of cytotoxic innate lymphocytes that also mediate antitumor immunity. We discovered that PD-1 and PD-L1 blockade elicited a strong NK cell response that was indispensable for the full therapeutic effect of immunotherapy. PD-1 was expressed on NK cells within transplantable, spontaneous, and genetically induced mouse tumor models, and PD-L1 expression in cancer cells resulted in reduced NK cell responses and generation of more aggressive tumors in vivo. PD-1 expression was more abundant on NK cells with an activated and more responsive phenotype and did not mark NK cells with an exhausted phenotype. These results demonstrate the importance of the PD-1/PD-L1 axis in inhibiting NK cell responses in vivo and reveal that NK cells, in addition to T cells, mediate the effect of PD-1/PD-L1 blockade immunotherapy.


Asunto(s)
Antígeno B7-H1/inmunología , Inmunoterapia , Células Asesinas Naturales/inmunología , Neoplasias Experimentales/terapia , Receptor de Muerte Celular Programada 1/inmunología , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/genética , Humanos , Células K562 , Células Asesinas Naturales/patología , Ratones , Ratones Noqueados , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...