Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 204(2): 405-20, 2007 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-17283208

RESUMEN

Embryonic stem cells have the distinct potential for tissue regeneration, including cardiac repair. Their propensity for multilineage differentiation carries, however, the liability of neoplastic growth, impeding therapeutic application. Here, the tumorigenic threat associated with embryonic stem cell transplantation was suppressed by cardiac-restricted transgenic expression of the reprogramming cytokine TNF-alpha, enhancing the cardiogenic competence of recipient heart. The in vivo aptitude of TNF-alpha to promote cardiac differentiation was recapitulated in embryoid bodies in vitro. The procardiogenic action required an intact endoderm and was mediated by secreted cardio-inductive signals. Resolved TNF-alpha-induced endoderm-derived factors, combined in a cocktail, secured guided differentiation of embryonic stem cells in monolayers produce cardiac progenitors termed cardiopoietic cells. Characterized by a down-regulation of oncogenic markers, up-regulation, and nuclear translocation of cardiac transcription factors, this predetermined population yielded functional cardiomyocyte progeny. Recruited cardiopoietic cells delivered in infarcted hearts generated cardiomyocytes that proliferated into scar tissue, integrating with host myocardium for tumor-free repair. Thus, cardiopoietic programming establishes a strategy to hone stem cell pluripotency, offering a tumor-resistant approach for regeneration.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Corazón/fisiología , Miocitos Cardíacos/citología , Regeneración/fisiología , Trasplante de Células Madre/métodos , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Cartilla de ADN , Células Madre Embrionarias/trasplante , Regulación de la Expresión Génica , Ratones , Ratones Transgénicos , Análisis por Micromatrices , Neoplasias/prevención & control , Factores de Transcripción/metabolismo
2.
FASEB J ; 20(13): 2271-80, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17077304

RESUMEN

Sepsis, the systemic inflammatory response to infection, imposes a high demand for bodily adaptation, with the cardiovascular response a key determinant of outcome. The homeostatic elements that secure cardiac tolerance in the setting of the sepsis syndrome are poorly understood. Here, in a model of acute septic shock induced by endotoxin challenge with Escherichia coli lipopolysaccharide (LPS), knockout of the KCNJ8 gene encoding the vascular Kir6.1 K(ATP) channel pore predisposed to an early and profound survival disadvantage. The exaggerated susceptibility provoked by disruption of this stress-responsive sensor of cellular metabolism was linked to progressive deterioration in cardiac activity, ischemic myocardial damage, and contractile dysfunction. Deletion of KCNJ8 blunted the responsiveness of coronary vessels to cytokine- or metabolic-mediated vasodilation necessary to support myocardial perfusion in the wild-type (WT), creating a deficit in adaptive response in the Kir6.1 knockout. Application of a K(ATP) channel opener drug improved survival in the endotoxic WT but had no effect in the Kir6.1 knockout. Restoration of the dilatory capacity of coronary vessels was required to rescue the Kir6.1 knockout phenotype and reverse survival disadvantage in lethal endotoxemia. Thus, the Kir6.1-containing K(ATP) channel, by coupling vasoreactivity with metabolic demand, provides a vital feedback element for cardiovascular tolerance in endotoxic shock.


Asunto(s)
Endotoxemia/genética , Canales de Potasio de Rectificación Interna/deficiencia , Canales de Potasio de Rectificación Interna/genética , Animales , Aorta/fisiopatología , Circulación Coronaria , Endotoxemia/patología , Endotoxemia/fisiopatología , Predisposición Genética a la Enfermedad , Hemodinámica , Técnicas In Vitro , Canales KATP , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Telemetría , Vasoconstricción , Vasodilatación
3.
Hum Mol Genet ; 15(15): 2285-97, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16782803

RESUMEN

Heart failure is a growing epidemic, with systemic hypertension a major risk factor for development of disease. However, the molecular determinants that prevent the transition from a state of hypertensive load to that of overt cardiac failure remain largely unknown. Here in experimental hypertension, knockout of the KCNJ11 gene, encoding the Kir6.2 pore-forming subunit of the sarcolemmal ATP-sensitive potassium (K(ATP)) channel, predisposed to heart failure and death. Defective decoding of hypertension-induced metabolic distress signals in the K(ATP) channel knockout set in motion pathological calcium overload and aggravated cardiac remodeling through a calcium/calcineurin-dependent cyclosporine-sensitive pathway. Rescue of the failing K(ATP) knockout phenotype was achieved by alternative control of myocardial calcium influx, bypassing uncoupled metabolic-electrical integration. The intact KCNJ11-encoded K(ATP) channel is thus a required safety element preventing hypertension-induced heart failure, with channel dysfunction a molecular substrate for stress-associated channelopathy in cardiovascular disease.


Asunto(s)
Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/genética , Hipertensión/complicaciones , Canales de Potasio de Rectificación Interna/genética , Remodelación Ventricular/genética , Animales , Calcineurina/metabolismo , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Insuficiencia Cardíaca/patología , Hipertensión/genética , Enfermedades Metabólicas/genética , Ratones , Ratones Noqueados , Fenotipo , Canales de Potasio de Rectificación Interna/deficiencia , Canales de Potasio de Rectificación Interna/metabolismo , Transducción de Señal/genética
4.
Ann N Y Acad Sci ; 1049: 189-98, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15965118

RESUMEN

The mitotic capacity of heart muscle is too limited to fully substitute for cells lost following myocardial infarction. Emerging stem cell-based strategies have been proposed to overcome the self-renewal shortfall of native cardiomyocytes, yet there is limited evidence for their capability to achieve safe de novo cardiogenesis and repair. We present our recent experience in treating long-term, infarcted hearts with embryonic stem cells, a prototype source for allogenic cell therapy. The cardiogenic potential of the engrafted murine embryonic stem cell colony was pre-tested by in vitro differentiation, with derived cells positive for nuclear cardiac transcription factors, sarcomeric proteins and functional excitation-contraction coupling. Eight weeks after infarct, rats were randomized into sham- or embryonic stem cell-treated groups. Acellular sham controls or embryonic stem cells, engineered to express enhanced cyan fluorescent protein (ECFP) under control of the cardiac actin promoter, were injected through a 28-gauge needle at three sites into the peri-infarct zone for serial assessment of functional and structural impact. In contrast to results with sham-treated animals, stem cell therapy yielded, over the 5-month follow-up period, new ECFP-positive cardiomyocytes that integrated with the infarcted myocardium. The stem cell-treated group showed a stable contractile performance benefit with normalization of myocardial architecture post infarction. Transition of embryonic stem cells into cardiomyocytes required host signaling to support cardiac-specific differentiation and could result in tumorigenesis if the stem cell dose exceeded the heart's cardioinductive capacity. Supported by the host environment, proper dosing and administration of embryonic stem cells is thus here shown useful in the chronic management of cardiac injury promoting sustained repair.


Asunto(s)
Infarto del Miocardio/patología , Regeneración , Trasplante de Células Madre , Trasplante Homólogo , Animales , Diferenciación Celular , Células Cultivadas , Ratones , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Distribución Aleatoria , Ratas , Células Madre
5.
J Mol Cell Cardiol ; 38(6): 895-905, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15910874

RESUMEN

Cardiac ATP-sensitive K(+) (K(ATP)) channels, gated by cellular metabolism, are formed by association of the inwardly rectifying potassium channel Kir6.2, the potassium conducting subunit, and SUR2A, the ATP-binding cassette protein that serves as the regulatory subunit. Kir6.2 is the principal site of ATP-induced channel inhibition, while SUR2A regulates K(+) flux through adenine nucleotide binding and catalysis. The ATPase-driven conformations within the regulatory SUR2A subunit of the K(ATP) channel complex have determinate linkage with the states of the channel's pore. The probability and life-time of ATPase-induced SUR2A intermediates, rather than competitive nucleotide binding alone, defines nucleotide-dependent K(ATP) channel gating. Cooperative interaction, instead of independent contribution of individual nucleotide binding domains within the SUR2A subunit, serves a decisive role in defining K(ATP) channel behavior. Integration of K(ATP) channels with the cellular energetic network renders these channel/enzyme heteromultimers high-fidelity metabolic sensors. This vital function is facilitated through phosphotransfer enzyme-mediated transmission of controllable energetic signals. By virtue of coupling with cellular energetic networks and the ability to decode metabolic signals, K(ATP) channels set membrane excitability to match demand for homeostatic maintenance. This new paradigm in the operation of an ion channel multimer is essential in providing the basis for K(ATP) channel function in the cardiac cell, and for understanding genetic defects associated with life-threatening diseases that result from the inability of the channel complex to optimally fulfill its physiological role.


Asunto(s)
Miocardio/metabolismo , Canales de Potasio/química , Canales de Potasio/fisiología , Transportadoras de Casetes de Unión a ATP/química , Potenciales de Acción , Adenosina Trifosfato/química , Sitio Alostérico , Animales , Catálisis , Creatina Quinasa/química , Dimerización , Glucólisis , Cardiopatías/metabolismo , Humanos , Iones , Cinética , Modelos Biológicos , Mutación , Nucleótidos/química , Potasio/química , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Conformación Proteica , Receptores de Droga/química , Receptores de Sulfonilureas , Factores de Tiempo
6.
Diabetes ; 53 Suppl 3: S165-8, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15561906

RESUMEN

Metabolic-sensing ATP-sensitive K+ channels (KATP channels) adjust membrane excitability to match cellular energetic demand. In the heart, KATP channel activity has been linked to homeostatic shortening of the action potential under stress, yet the requirement of channel function in securing cardiac electrical stability is only partially understood. Here, upon catecholamine challenge, disruption of KATP channels, by genetic deletion of the pore-forming Kir6.2 subunit, produced defective cardiac action potential shortening, predisposing the myocardium to early afterdepolarizations. This deficit in repolarization reserve, demonstrated in Kir6.2-knockout hearts, translated into a high risk for induction of triggered activity and ventricular dysrhythmia. Thus, intact KATP channel function is mandatory for adequate repolarization under sympathetic stress providing electrical tolerance against triggered arrhythmia.


Asunto(s)
Catecolaminas/toxicidad , Eliminación de Gen , Canales de Potasio de Rectificación Interna/fisiología , Fibrilación Ventricular/genética , Adenosina Trifosfato/fisiología , Animales , Ratones , Ratones Noqueados , Canales de Potasio de Rectificación Interna/deficiencia , Canales de Potasio de Rectificación Interna/genética , Subunidades de Proteína/deficiencia , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Fibrilación Ventricular/inducido químicamente
7.
Hum Mol Genet ; 13(20): 2505-18, 2004 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15317754

RESUMEN

Abnormal expression of human myotonic dystrophy protein kinase (hDMPK) gene products has been implicated in myotonic dystrophy type 1 (DM1), yet the impact of distress accumulation produced by persistent overexpression of this poorly understood member of the Rho kinase-related protein kinase gene-family remains unknown. Here, in the aged transgenic murine line carrying approximately 25 extra copies of a complete hDMPK gene with all exons and an intact promoter region (Tg26-hDMPK), overexpression of mRNA and protein transgene products in cardiac, skeletal and smooth muscles resulted in deficient exercise endurance, an integrative index of muscle systems underperformance. In contrast to age-matched (11-15 months) wild-type controls, hearts from Tg26-hDMPK developed cardiomyopathic remodeling with myocardial hypertrophy, myocyte disarray and interstitial fibrosis. Hypertrophic cardiomyopathy was associated with a propensity for dysrhythmia and characterized by overt intracellular calcium overload promoting nuclear translocation of transcription factors responsible for maladaptive gene reprogramming. Skeletal muscles in distal limbs of Tg26-hDMPK showed myopathy with myotonic discharges coupled with deficit in sarcolemmal chloride channels, required regulators of hyperexcitability. Fiber degeneration in Tg26-hDMPK resulted in sarcomeric disorganization, centralization of nuclei and tubular aggregation. Moreover, the reduced blood pressure in Tg26-hDMPK indicated deficient arterial smooth muscle tone. Thus, the cumulative stress induced by permanent overexpression of hDMPK gene products translates into an increased risk for workload intolerance, hypertrophic cardiomyopathy with dysrhythmia, myotonic myopathy and hypotension, all distinctive muscle traits of DM1. Proper expression of hDMPK is, therefore, mandatory in supporting the integral balance among cytoarchitectural infrastructure, ion-homeostasis and viability control in various muscle cell types.


Asunto(s)
Cardiomiopatía Hipertrófica/etiología , Hipotensión/etiología , Distrofia Miotónica/etiología , Proteínas Serina-Treonina Quinasas/genética , Envejecimiento/metabolismo , Animales , Ecocardiografía , Prueba de Esfuerzo , Dosificación de Gen , Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Músculo Liso Vascular/patología , Miocardio/patología , Miocardio/ultraestructura , Proteína Quinasa de Distrofia Miotónica , Proteínas Serina-Treonina Quinasas/metabolismo , Transgenes
8.
Am J Physiol Heart Circ Physiol ; 287(2): H471-9, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15277190

RESUMEN

Conventional therapies for myocardial infarction attenuate disease progression without contributing significantly to repair. Because of the capacity for de novo cardiogenesis, embryonic stem cells are considered a potential source for myocardial regeneration, yet limited information is available on their ultimate therapeutic value. We treated infarcted rat hearts with CGR8 embryonic stem cells preexamined for cardiogenicity, serially probed left ventricular function, and determined final pathological outcome. Stem cell delivery generated new cardiomyocytes of embryonic stem cell origin that integrated with host myocardium within infarct regions. This resulted in a functional benefit within 3 wk that remained sustained over 12 wk of continuous follow-up and included a vigorous inotropic response to beta-adrenergic challenge. Integration of stem cell-derived cardiomyocytes was associated with normalized ventricular architecture, little scar, and a decrease in signs of myocardial necrosis. In contrast, sham-treated infarcted hearts exhibited ventricular cavity dilation and aneurysm formation, poor ventricular function, and a lack of response to beta-adrenergic stimulation. No evidence of graft rejection, ectopy, sudden cardiac death, or tumor formation was observed after therapy. These findings indicate that embryonic stem cells, through differentiation within the host myocardium, can contribute to a stable beneficial outcome on contractile function and ventricular remodeling in the infarcted heart.


Asunto(s)
Infarto del Miocardio/cirugía , Trasplante de Células Madre , Animales , Diferenciación Celular , Línea Celular , Cicatriz/patología , Cricetinae , Ecocardiografía , Electrocardiografía , Corazón/fisiopatología , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Ratas , Regeneración , Células Madre/patología , Remodelación Ventricular
9.
Nat Genet ; 36(4): 382-7, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15034580

RESUMEN

Stress tolerance of the heart requires high-fidelity metabolic sensing by ATP-sensitive potassium (K(ATP)) channels that adjust membrane potential-dependent functions to match cellular energetic demand. Scanning of genomic DNA from individuals with heart failure and rhythm disturbances due to idiopathic dilated cardiomyopathy identified two mutations in ABCC9, which encodes the regulatory SUR2A subunit of the cardiac K(ATP) channel. These missense and frameshift mutations mapped to evolutionarily conserved domains adjacent to the catalytic ATPase pocket within SUR2A. Mutant SUR2A proteins showed aberrant redistribution of conformations in the intrinsic ATP hydrolytic cycle, translating into abnormal K(ATP) channel phenotypes with compromised metabolic signal decoding. Defective catalysis-mediated pore regulation is thus a mechanism for channel dysfunction and susceptibility to dilated cardiomyopathy.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Cardiomiopatía Dilatada/genética , Activación del Canal Iónico/genética , Mutación , Canales de Potasio de Rectificación Interna , Canales de Potasio/genética , Receptores de Droga/genética , Adulto , Secuencia de Aminoácidos , Animales , Catálisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Receptores de Sulfonilureas
10.
Mol Cell Biochem ; 256-257(1-2): 59-72, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14977170

RESUMEN

Adenylate kinases (AK, EC 2.7.4.3) have been considered important enzymes for energy homeostasis and metabolic signaling. To gain a better understanding of their cell-specific significance we studied the structural and functional aspects of products of one adenylate kinase gene, AK1, in mouse tissues. By combined computer database comparison and Northern analysis of mRNAs, we identified transcripts of 0.7 and 2.0 kilobases with different 5' and 3' non-coding regions which result from alternative use of promoters and polyadenylation sites. These mRNAs specify two distinct proteins, AK1 and a membrane-bound AK1 isoform (AK1beta), which differ in their N-terminal end and are co-expressed in several tissues with high-energy demand, including the brain. Immunohistochemical analysis of brain tissue and primary neurons and astrocytes in culture demonstrated that AK1 isoforms are expressed predominantly in neurons. AK1beta, when tested in transfected COS-1 and N2a neuroblastoma cells, located at the cellular membrane and was able to catalyze phosphorylation of ADP in vitro. In addition, AK1beta mediated AMP-induced activation of recombinant ATP-sensitive potassium channels in the presence of ATP. Thus, two structurally distinct AK1 isoforms co-exist in the mouse brain within distinct cellular locations. These enzymes may function in promoting energy homeostasis in the compartmentalized cytosol and in translating cellular energetic signals to membrane metabolic sensors.


Asunto(s)
Adenilato Quinasa/metabolismo , Encéfalo/enzimología , Isoenzimas/metabolismo , Adenilato Quinasa/genética , Animales , Secuencia de Bases , Encéfalo/citología , Encéfalo/metabolismo , Células Cultivadas , Cartilla de ADN , Metabolismo Energético , Homeostasis , Isoenzimas/genética , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Mol Cell Biochem ; 256-257(1-2): 243-56, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14977185

RESUMEN

Transmission of energetic signals to membrane sensors, such as the ATP-sensitive K+ (KATP) channel, is vital for cellular adaptation to stress. Yet, cell compartmentation implies diffusional hindrances that hamper direct reception of cytosolic energetic signals. With high intracellular ATP levels, KATP channels may sense not bulk cytosolic, but rather local submembrane nucleotide concentrations set by membrane ATPases and phosphotransfer enzymes. Here, we analyzed the role of adenylate kinase and creatine kinase phosphotransfer reactions in energetic signal transmission over the strong diffusional barrier in the submembrane compartment, and translation of such signals into a nucleotide response detectable by KATP channels. Facilitated diffusion provided by creatine kinase and adenylate kinase phosphotransfer dissipated nucleotide gradients imposed by membrane ATPases, and shunted diffusional restrictions. Energetic signals, simulated as deviation of bulk ATP from its basal level, were amplified into an augmented nucleotide response in the submembrane space due to failure under stress of creatine kinase to facilitate nucleotide diffusion. Tuning of creatine kinase-dependent amplification of the nucleotide response was provided by adenylate kinase capable of adjusting the ATP/ADP ratio in the submembrane compartment securing adequate KATP channel response in accord with cellular metabolic demand. Thus, complementation between creatine kinase and adenylate kinase systems, here predicted by modeling and further supported experimentally, provides a mechanistic basis for metabolic sensor function governed by alterations in intracellular phosphotransfer fluxes.


Asunto(s)
Adenilato Quinasa/metabolismo , Creatina/metabolismo , Activación del Canal Iónico , Canales de Potasio/metabolismo , Animales , Catálisis , Metabolismo Energético , Transducción de Señal
13.
J Mol Cell Cardiol ; 35(9): 1161-6, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12967639

RESUMEN

Mitochondrial integrity is critical in the maintenance of bioenergetic homeostasis of the myocardium, with oxidative or metabolic challenge to mitochondria precipitating cell injury. In heart failure, where cardiac cells are exposed to elevated stress, mitochondrial vulnerability could contribute to the disease state. However, the mitochondrial response to stress is yet to be established in heart failure. Here, mitochondrial function and structure was evaluated prior and following stress using a transgenic (TG) model of heart failure, generated by cardiac overexpression of the cytokine TNFalpha. Compared to the wild type, mitochondria from TG failing hearts demonstrated impaired oxidative phosphorylation, mitochondrial DNA damage, reduced mitochondrial creatine kinase activity, abnormal calcium handling, and altered ultrastructure. Under anoxia/reoxygenation or calcium stress, mitochondria from failing hearts suffered exacerbated energetic failure with pronounced cytochrome c release. Thus, mitochondria from TNFalpha-TG failing hearts demonstrate structural and functional abnormalities, with reduced tolerance to stress manifested by impaired bioenergetics and increased susceptibility to injury. This abnormal vulnerability to stress underscores the impact of mitochondrial dysfunction in the pathobiology of heart failure.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Mitocondrias Cardíacas/enzimología , Estrés Fisiológico , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Calcio/metabolismo , Hipoxia de la Célula , Creatina Quinasa/metabolismo , Citocromos c/metabolismo , Daño del ADN , Femenino , Insuficiencia Cardíaca/etiología , Ratones , Ratones Transgénicos , Mitocondrias Cardíacas/ultraestructura , Fosforilación Oxidativa , Factor de Necrosis Tumoral alfa/genética
15.
EMBO J ; 22(8): 1732-42, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12682006

RESUMEN

ATP-sensitive potassium (K(ATP)) channels are required for maintenance of homeostasis during the metabolically demanding adaptive response to stress. However, in disease, the effect of cellular remodeling on K(ATP) channel behavior and associated tolerance to metabolic insult is unknown. Here, transgenic expression of tumor necrosis factor alpha induced heart failure with typical cardiac structural and energetic alterations. In this paradigm of disease remodeling, K(ATP) channels responded aberrantly to metabolic signals despite intact intrinsic channel properties, implicating defects proximal to the channel. Indeed, cardiomyocytes from failing hearts exhibited mitochondrial and creatine kinase deficits, and thus a reduced potential for metabolic signal generation and transmission. Consequently, K(ATP) channels failed to properly translate cellular distress under metabolic challenge into a protective membrane response. Failing hearts were excessively vulnerable to metabolic insult, demonstrating cardiomyocyte calcium loading and myofibrillar contraction banding, with tolerance improved by K(ATP) channel openers. Thus, disease-induced K(ATP) channel metabolic dysregulation is a contributor to the pathobiology of heart failure, illustrating a mechanism for acquired channelopathy.


Asunto(s)
Adenosina Trifosfato/metabolismo , Gasto Cardíaco Bajo/metabolismo , Canales de Potasio/metabolismo , Factor de Crecimiento Transformador alfa/metabolismo , Remodelación Ventricular/fisiología , Animales , Calcio/metabolismo , Cardiotónicos/farmacología , Creatina Quinasa/metabolismo , Dinitrofenoles/farmacología , Femenino , Activación del Canal Iónico , Isoproterenol/farmacología , Masculino , Ratones , Mitocondrias/metabolismo , Miocardio/ultraestructura , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Factor de Crecimiento Transformador alfa/genética , Transgenes , Desacopladores/farmacología
16.
Am J Physiol Heart Circ Physiol ; 284(6): H2106-13, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12598229

RESUMEN

Although ischemic preconditioning induces bioenergetic tolerance and thereby remodels energy metabolism that is crucial for postischemic recovery of the heart, the molecular components associated with preservation of cellular energy production, transfer, and utilization are not fully understood. Here myocardial bioenergetic dynamics were assessed by (18)O-assisted (31)P-NMR spectroscopy in control or preconditioned hearts from wild-type (WT) or Kir6.2-knockout (Kir6.2-KO) mice that lack metabolism-sensing sarcolemmal ATP-sensitive K(+) (K(ATP)) channels. In WT vs. Kir6.2-KO hearts, preconditioning induced a significantly higher total ATP turnover (232 +/- 20 vs. 155 +/- 15 nmol x mg protein(-1) x min(-1)), ATP synthesis rate (58 +/- 3 vs. 46 +/- 3% (18)O labeling of gamma-ATP), and ATP consumption rate (51 +/- 4 vs. 31 +/- 4% (18)O labeling of P(i)) after ischemia-reperfusion. Moreover, preconditioning preserved cardiac creatine kinase-catalyzed phosphotransfer in WT (234 +/- 26 nmol x mg protein(-1) x min(-1)) but not Kir6.2-KO (133 +/- 18 nmol x mg protein(-1) x min(-1)) hearts. In contrast with WT hearts, preconditioning failed to preserve contractile recovery in Kir6.2-KO hearts, as tight coupling between postischemic performance and high-energy phosphoryl transfer was compromised in the K(ATP)-channel-deficient myocardium. Thus intact K(ATP) channels are integral in ischemic preconditioning-induced protection of cellular energetic dynamics and associated cardiac performance.


Asunto(s)
Metabolismo Energético/genética , Metabolismo Energético/fisiología , Corazón/fisiología , Precondicionamiento Isquémico Miocárdico , Miocardio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/fisiología , Adenosina Trifosfato/metabolismo , Animales , Técnicas In Vitro , Espectroscopía de Resonancia Magnética , Ratones , Ratones Noqueados , Isquemia Miocárdica/fisiopatología , Fosfocreatina/metabolismo , Sarcolema/metabolismo
17.
FASEB J ; 16(12): 1558-66, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12374778

RESUMEN

Members of the transforming growth factor beta1 (TGF-beta) superfamily--namely, TGF-beta and BMP2--applied to undifferentiated murine embryonic stem cells up-regulated mRNA of mesodermal (Brachyury) and cardiac specific transcription factors (Nkx2.5, MEF2C). Embryoid bodies generated from stem cells primed with these growth factors demonstrated an increased potential for cardiac differentiation with a significant increase in beating areas and enhanced myofibrillogenesis. In an environment of postmitotic cardiomyocytes, stem cells engineered to express a fluorescent protein under the control of a cardiac promoter differentiated into fluorescent ventricular myocytes beating in synchrony with host cells, a process significantly enhanced by TGF-beta or BMP2. In vitro, disruption of the TGF-beta/BMP signaling pathways by latency-associated peptide and/or noggin prevented differentiation of stem cells. In fact, only host cells that secrete a TGF-beta family member induced a cardiac phenotype in stem cells. In vivo, transplantation of stem cells into heart also resulted in cardiac differentiation provided that TGF-beta/BMP2 signaling was intact. In infarcted myocardium, grafted stem cells differentiated into functional cardiomyocytes integrated with surrounding tissue, improving contractile performance. Thus, embryonic stem cells are directed to differentiate into cardiomyocytes by signaling mediated through TGF-beta/BMP2, a cardiac paracrine pathway required for therapeutic benefit of stem cell transplantation in diseased heart.


Asunto(s)
Proteínas Morfogenéticas Óseas/farmacología , Diferenciación Celular/efectos de los fármacos , Miocardio/metabolismo , Células Madre/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología , Animales , Animales Recién Nacidos , Proteína Morfogenética Ósea 2 , Proteínas Morfogenéticas Óseas/metabolismo , Línea Celular , Células Cultivadas , Ecocardiografía , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Miocardio/citología , Ratas , Transducción de Señal , Trasplante de Células Madre/métodos , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/metabolismo
18.
Proc Natl Acad Sci U S A ; 99(20): 13278-83, 2002 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-12271142

RESUMEN

Reaction to stress requires feedback adaptation of cellular functions to secure a response without distress, but the molecular order of this process is only partially understood. Here, we report a previously unrecognized regulatory element in the general adaptation syndrome. Kir6.2, the ion-conducting subunit of the metabolically responsive ATP-sensitive potassium (K(ATP)) channel, was mandatory for optimal adaptation capacity under stress. Genetic deletion of Kir6.2 disrupted K(ATP) channel-dependent adjustment of membrane excitability and calcium handling, compromising the enhancement of cardiac performance driven by sympathetic stimulation, a key mediator of the adaptation response. In the absence of Kir6.2, vigorous sympathetic challenge caused arrhythmia and sudden death, preventable by calcium-channel blockade. Thus, this vital function identifies a physiological role for K(ATP) channels in the heart.


Asunto(s)
Adaptación Biológica , Neuronas/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/fisiología , Animales , Arritmias Cardíacas/patología , Calcio/metabolismo , Muerte Súbita , Electrofisiología , Hemodinámica , Homeostasis , Iones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Perfusión , Condicionamiento Físico Animal , Esfuerzo Físico , Estrés Fisiológico , Factores de Tiempo
19.
Pacing Clin Electrophysiol ; 25(4 Pt 1): 408-13, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11991364

RESUMEN

Active pectoral pulse generators are used routinely for initial ICD placement because they reduce DFTs and simplify the implantation procedure. Despite the common use of these systems, little is known regarding the clinical predictors of defibrillation efficacy with active pulse generator lead configurations. Such predictors would be helpful to identify patients likely to require higher output devices or more complicated implantations. This was a prospective evaluation of DFT using a uniform testing protocol in 102 consecutive patients with an active pectoral can and dual coil transvenous lead. For each patient, the DFT was measured with a step-down protocol. In addition, 34 parameters were assessed including standard clinical echocardiographic and radiographic measures. Multivariate stepwise regression analysis was performed to identify independent predictors of the DFT. The mean DFT was 9.3 +/- 4.6 J and 93% (95/102) of patients had a DFT < or = 15 J. The QRS duration, interventricular septum thickness, left ventricular mass, and mass index were significant but weak (R < 0.3) univariate predictors of DFT. The left ventricular mass was the only independent predictor by multivariate analysis, but this parameter accounted for < 5% of the variability of DFT measured (adjusted R2 = 0.047, P = 0.017). The authors concluded that an acceptable DFT (< 15 J) is observed in > 90% of patients with this dual coil and active pectoral can lead system. Clinical factors are of limited use for predicting DFTs and identifying those patients who will have high thresholds.


Asunto(s)
Desfibriladores Implantables , Electrocardiografía/instrumentación , Electrodos Implantados , Fibrilación Ventricular/terapia , Anciano , Cardiomegalia/fisiopatología , Enfermedad Coronaria/fisiopatología , Ecocardiografía , Diseño de Equipo , Femenino , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Músculos Pectorales , Estudios Prospectivos , Factores de Riesgo , Resultado del Tratamiento , Disfunción Ventricular Izquierda/fisiopatología , Fibrilación Ventricular/fisiopatología
20.
J Biol Chem ; 277(27): 24427-34, 2002 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-11967264

RESUMEN

Transduction of metabolic signals is essential in preserving cellular homeostasis. Yet, principles governing integration and synchronization of membrane metabolic sensors with cell metabolism remain elusive. Here, analysis of cellular nucleotide fluxes and nucleotide-dependent gating of the ATP-sensitive K+ (K(ATP)) channel, a prototypic metabolic sensor, revealed a diffusional barrier within the submembrane space, preventing direct reception of cytosolic signals. Creatine kinase phosphotransfer, captured by 18O-assisted 31P NMR, coordinated tightly with ATP turnover, reflecting the cellular energetic status. The dynamics of high energy phosphoryl transfer through the creatine kinase relay permitted a high fidelity transmission of energetic signals into the submembrane compartment synchronizing K(ATP) channel activity with cell metabolism. Knock-out of the creatine kinase M-CK gene disrupted signal delivery to K(ATP) channels and generated a cellular phenotype with increased electrical vulnerability. Thus, in the compartmentalized cell environment, phosphotransfer systems shunt diffusional barriers and secure regimented signal transduction integrating metabolic sensors with the cellular energetic network.


Asunto(s)
Creatina Quinasa/genética , Metabolismo Energético/fisiología , Corazón/fisiología , Isoenzimas/genética , Miocardio/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Membrana Celular/metabolismo , Creatina Quinasa/deficiencia , Creatina Quinasa/metabolismo , Forma MM de la Creatina-Quinasa , Isoenzimas/deficiencia , Isoenzimas/metabolismo , Cinética , Espectroscopía de Resonancia Magnética , Potenciales de la Membrana , Ratones , Ratones Noqueados , Modelos Biológicos , Canales de Potasio/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...