Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Theor Appl Genet ; 135(5): 1619-1636, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35224663

RESUMEN

Sugarcane, with its exceptional carbon dioxide assimilation, biomass and sugar yield, has a high potential for the production of bio-energy, bio-plastics and high-value products in the food and pharmaceutical industries. A crucial challenge for long-term economic viability and environmental sustainability is also to optimize the production of biomass composition and carbon sequestration. Sugarcane varieties such as KQ228 and Q253 are highly utilized in the industry. These varieties are characterized by a high early-season sugar content associated with high yield. In order to investigate these correlations, 1,440 internodes were collected and combined to generate a set of 120 samples in triplicate across 24 sugarcane cultivars at five different development stages. Weighted gene co-expression network analysis (WGCNA) was used and revealed for the first time two sets of co-expressed genes with a distinct and opposite correlation between fibre and sugar content. Gene identification and metabolism pathways analysis was used to define these two sets of genes. Correlation analysis identified a large number of interconnected metabolic pathways linked to sugar content and fibre content. Unsupervised hierarchical clustering of gene expression revealed a stronger level of segregation associated with the genotypes than the stage of development, suggesting a dominant genetic influence on biomass composition and facilitating breeding selection. Characterization of these two groups of co-expressed key genes can help to improve breeding program for high fibre, high sugar species or plant synthetic biology.


Asunto(s)
Saccharum , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Estaciones del Año , Sacarosa/metabolismo , Azúcares , Transcriptoma
2.
Biotechnol Biofuels ; 13(1): 201, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298135

RESUMEN

BACKGROUND: The composition of biomass determines its suitability for different applications within a biorefinery system. The proportion of the major biomass fractions (sugar, cellulose, hemicellulose and lignin) may vary in different sugarcane genotypes and growth environments and different parts of the plant. This study investigated the composition of mature and immature internodes, roots and mature leaves of sugarcane. RESULTS: Internodes were found to have a significantly larger alcohol-soluble component than leaves and roots. The primary difference between the immature and mature internodes was the ratio of soluble sugars. In mature tissues, sucrose content was significantly higher, whereas in immature internodal tissues there was lower sucrose and heightened concentrations of reducing sugars. Carbon (C) partitioning in leaf tissues was characterised by low levels of soluble components and high "other" and cell wall fractions. Root tissue had low ratios of soluble fractions relative to their cell wall contents, indicating a lack of storage of soluble carbon. There was no significant difference in the ratio of the major cell wall fractions between the major organ types. Characterisation of individual non-cellulosic monomers indicated leaf and root tissues had significantly higher arabinose and galactose fractions. Significantly larger proportions of syringyl lignin compounds and the hydroxycinnamic compound, p-coumaric acid were observed in mature internodal tissues compared to the other tissue types. Tissue-specific differences in composition were shown to greatly affect the recalcitrance of the cell wall to enzymatic saccharification. CONCLUSIONS: Overall, this study displayed clear evidence of the differential partitioning of C throughout the sugarcane plant in specific organs. These organ-specific differences have major implications in their utility as a bioproduct feedstock. For example, the inclusion of trash (leaves) with the culms (internodes) may alter processing efficiency.

3.
Plant Direct ; 4(11): e00276, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33204934

RESUMEN

Sugarcane, with its exceptional biomass and sugar yield, has a high potential for the production of bioenergy, biomaterials, and high-value products. Currently, the link between metabolic changes in the developing internodes in sugarcane and final yield and sugar characteristics is not well understood. In order to investigate these correlations, 1,440 internodes were collected and combined to generate a set of 360 samples across 24 sugarcane cultivars at five different developmental stages. A combination of metabolome profiling and trait co-expression analyses were conducted to reveal the interaction between the metabolome and essential agronomic traits, including Brix (total sugar), polarity (sucrose content), purity (sucrose purity), commercially extractable sucrose, fiber, and tons of cane per hectare (TCH). Metabolomic analysis revealed significant differences in metabolic patterns mainly correlated with developmental stage. Hierarchical clustering of genotypes and traits revealed clear partitioning of groups of early-, mid- and late-season sugar content, with secondary segregation by the yield trait, TCH, and fiber content. The study identified co-expression and specific metabolites associated with metabolic pathways correlated with Brix and fiber content. Knowledge of the correlation between co-expressed metabolites and diverse agronomic traits will allow more deliberate selection of genotypes for early or late sugar development and fiber content and biomass yield.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...