Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 269(Pt 2): 131925, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685540

RESUMEN

The prevalence of Alzheimer's disease (AD) and its associated economic and societal burdens are on the rise, but there are no curative treatments for AD. Interestingly, this neurodegenerative disease shares several biological and pathophysiological features with cancer, including cell-cycle dysregulation, angiogenesis, mitochondrial dysfunction, protein misfolding, and DNA damage. However, the genetic factors contributing to the overlap in biological processes between cancer and AD have not been actively studied. In this review, we discuss the shared biological features of cancer and AD, the molecular targets of anticancer drugs, and therapeutic approaches. First, we outline the common biological features of cancer and AD. Second, we describe several anticancer drugs, their molecular targets, and their effects on AD pathology. Finally, we discuss how protein-protein interactions (PPIs), receptor inhibition, immunotherapy, and gene therapy can be exploited for the cure and management of both cancer and AD. Collectively, this review provides insights for the development of AD theragnostics based on cancer drugs and molecular targets.


Asunto(s)
Enfermedad de Alzheimer , Antineoplásicos , Neoplasias , Humanos , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Inmunoterapia , Animales , Terapia Molecular Dirigida , Terapia Genética
2.
Mol Brain ; 17(1): 21, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38685105

RESUMEN

Dopamine plays important roles in cognitive function and inflammation and therefore is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Drugs that increase or maintain dopamine levels in the brain could be a therapeutic strategy for AD. However, the effects of dopamine and its precursor levodopa (L-DOPA) on Aß/tau pathology in vivo and the underlying molecular mechanisms have not been studied in detail. Here, we investigated whether L-DOPA treatment alters neuroinflammation, Aß pathology, and tau phosphorylation in 5xFAD mice, a model of AD. We found that L-DOPA administration significantly reduced microgliosis and astrogliosis in 5xFAD mice. In addition, L-DOPA treatment significantly decreased Aß plaque number by upregulating NEP and ADAM17 levels in 5xFAD mice. However, L-DOPA-treated 5xFAD mice did not exhibit changes in tau hyperphosphorylation or tau kinase levels. These data suggest that L-DOPA alleviates neuroinflammatory responses and Aß pathology but not tau pathology in this mouse model of AD.


Asunto(s)
Proteína ADAM17 , Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Levodopa , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Proteínas tau , Animales , Levodopa/farmacología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Proteína ADAM17/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/metabolismo , Fosforilación/efectos de los fármacos , Placa Amiloide/patología , Placa Amiloide/metabolismo , Ratones , Encéfalo/patología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo
3.
Int J Biol Macromol ; 263(Pt 2): 130516, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423419

RESUMEN

Tau is a microtubule-associated protein that plays a critical role in the stabilization and modulation of neuronal axons. Tau pathology is stronger associated with cognitive decline in patients with Alzheimer's disease (AD) than amyloid beta (Aß) pathology. Hence, tau targeting is a promising approach for the treatment of AD. Previous studies have demonstrated that the non-saponin fraction with rich polysaccharide (NFP) from Korean red ginseng (KRG) can modulate tau aggregation and exert a therapeutic effect on AD. Therefore, we investigated the efficacy of NFP isolated from KRG on tau pathology in experimental models of AD. Our results showed that NFP from KRG ameliorated deposition and hyperphosphorylation of tau in the brain of 3xTg mice. Moreover, NFP from KRG modulated the aggregation and dissociation of tau K18 in vitro. We demonstrated the alleviatory effects of NFP from KRG on hyperphosphorylated tau and tau kinase in okadaic acid-treated HT22 cells. Furthermore, NFP from KRG mitigated Aß deposition, neurodegeneration, and neuroinflammation in 3xTg mice. We revealed the neuroprotective effects of NFP from KRG on tau-induced neuronal loss in HT22 cells. Our results indicate that NFP extracted from KRG is a novel therapeutic agent for the treatment of AD associated with tau pathology.


Asunto(s)
Enfermedad de Alzheimer , Panax , Humanos , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Panax/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad
4.
Front Pharmacol ; 14: 1238639, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601068

RESUMEN

Many researchers are attempting to identify drugs that can be repurposed as effective therapies for Alzheimer's disease (AD). Several recent studies have highlighted epidermal growth factor receptor (EGFR) inhibitors approved for use as anti-cancer drugs as potential candidates for repurposing as AD therapeutics. In cancer, EGFR inhibitors target cell proliferation and angiogenesis, and studies in AD mouse models have shown that EGFR inhibitors can attenuate amyloid-beta (Aß) pathology and improve cognitive function. In this review, we discuss the different functions of EGFR in cancer and AD and the potential of EGFR as a dual molecular target for AD diseases. In addition, we describe the effects of anti-cancer EGFR tyrosine kinase inhibitors (TKIs) on AD pathology and their prospects as therapeutic interventions for AD. By summarizing the physiological functions of EGFR in cancer and AD, this review emphasizes the significance of EGFR as an important molecular target for these diseases.

5.
Mol Brain ; 16(1): 63, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580778

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aß deposition, tauopathy, neuroinflammation, and impaired cognition. The recent identification of associations between protein kinases and AD pathology has spurred interest in tyrosine kinase inhibitors (TKIs) as potential strategic therapeutic agents for AD. In the present study, we investigated whether the TKIs ibrutinib, PD180970, and cabozantinib, which have different on-targets, selectively regulate AD pathology in 3.5- to 4-month-old 5xFAD mice (a model of the early phase of AD). Ibrutinib (10 mg/kg, i.p.) effectively reduced amyloid-ß (Aß) plaque number, tau hyperphosphorylation and neuroinflammation in 5xFAD mice. Surprisingly, PD180970 (10 mg/kg, i.p.) did not alter Aß plaque number or neuroinflammatory responses and exacerbated tau hyperphosphorylation in 5xFAD mice. Cabozantinib (10 mg/kg, i.p.) had no effect on amyloidopathy but partially relieved tau hyperphosphorylation and astrogliosis. Taken together, our results suggest that not all TKIs have therapeutic effects on AD pathology in a mouse model of AD. Consequently, optimization of drug dosage, injection periods and administration routes should be considered when repurposing TKIs as novel AD therapeutics.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedad de Alzheimer/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neuroinflamatorias , Ratones Transgénicos , Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Proteínas tau/metabolismo
6.
BMB Rep ; 56(9): 520-525, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37482752

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline. Several recent studies demonstrated that impaired adult neurogenesis could contribute to AD-related cognitive impairment. Adult subventricular zone (SVZ) neurogenesis, which occurs in the lateral ventricles, plays a crucial role in structural plasticity and neural circuit maintenance. Alterations in adult SVZ neurogenesis are early events in AD, and impaired adult neurogenesis is influenced by the accumulation of intracellular Aß. Although Aß-overexpressing transgenic 5XFAD mice are an AD animal model well representative of Aß-related pathologies in the brain, the characterization of altered adult SVZ neurogenesis following AD progression in 5XFAD mice has not been thoroughly examined. Therefore, we validated the characterization of adult SVZ neurogenesis changes with AD progression in 2-, 4-, 8-, and 11-monthold male 5XFAD mice. We first investigated the Aß accumulation in the SVZ using the 4G8 antibody. We observed intracellular Aß accumulation in the SVZ of 2-month-old 5XFAD mice. In addition, 5XFAD mice exhibited significantly increased Aß deposition in the SVZ with age. Next, we performed a histological analysis to investigate changes in various phases of adult neurogenesis, such as quiescence, proliferation, and differentiation, in SVZ. Compared to age-matched wild-type (WT) mice, quiescent neural stem cells were reduced in 5XFAD mice from 2-11 months of age. Moreover, proliferative neural stem cells were decreased in 5XFAD mice from 2 to 8 months of age. Furthermore, differentiations of neuroblasts were diminished in 5XFAD mice from 2-11 months of age. Intriguingly, we found that adult SVZ neurogenesis was reduced with aging in healthy mice. Taken together, our results revealed that impairment of adult SVZ neurogenesis appears with aging or AD progression. [BMB Reports 2023; 56(9): 520-525].


Asunto(s)
Enfermedad de Alzheimer , Células-Madre Neurales , Enfermedades Neurodegenerativas , Ratones , Masculino , Animales , Enfermedad de Alzheimer/patología , Neurogénesis , Células-Madre Neurales/patología , Ratones Transgénicos , Modelos Animales de Enfermedad , Péptidos beta-Amiloides
7.
Front Immunol ; 14: 1150940, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435081

RESUMEN

Introduction: Lomerizine is a calcium channel blocker that crosses the blood-brain barrier and is used clinically in the treatment of migraines. However, whether lomerizine is beneficial in modulating neuroinflammatory responses has not been tested yet. Methods: To assess the potential of lomerizine for repurposing as a treatment for neuroinflammation, we investigated the effects of lomerizine on LPS-induced proinflammatory responses in BV2 microglial cells, Alzheimer's disease (AD) excitatory neurons differentiated from induced pluripotent stem cells (iPSCs), and in LPS-treated wild type mice. Results: In BV2 microglial cells, lomerizine pretreatment significantly reduced LPS-evoked proinflammatory cytokine and NLRP3 mRNA levels. Similarly, lomerizine pretreatment significantly suppressed the increases in Iba-1, GFAP, proinflammatory cytokine and NLRP3 expression induced by LPS in wild-type mice. In addition, lomerizine posttreatment significantly decreased LPS-stimulated proinflammatory cytokine and SOD2 mRNA levels in BV2 microglial cells and/or wild-type mice. In LPS-treated wild-type mice and AD excitatory neurons differentiated from iPSCs, lomerizine pretreatment ameliorated tau hyperphosphorylation. Finally, lomerizine abolished the LPS-mediated activation of GSK3α/ß and upregulation of DYRK1A, which is responsible for tau hyperphosphorylation, in wild-type mice. Discussion: These data suggest that lomerizine attenuates LPS-mediated neuroinflammatory responses and tau hyperphosphorylation and is a potential drug for neuroinflammation- or tauopathy-associated diseases.


Asunto(s)
Enfermedad de Alzheimer , Glucógeno Sintasa Quinasa 3 , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Citocinas , Inflamación/tratamiento farmacológico , Lipopolisacáridos , Enfermedades Neuroinflamatorias , Proteínas tau , Quinasas DyrK
9.
Pharmacol Res ; 190: 106725, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36907286

RESUMEN

Repurposing approved drugs is an emerging therapeutic development strategy for Alzheimer's disease (AD). The CDK4/6 inhibitor abemaciclib mesylate is an FDA-approved drug for breast cancer treatment. However, whether abemaciclib mesylate affects Aß/tau pathology, neuroinflammation, and Aß/LPS-mediated cognitive impairment is unknown. In this study, we investigated the effects of abemaciclib mesylate on cognitive function and Aß/tau pathology and found that abemaciclib mesylate improved spatial and recognition memory by regulating the dendritic spine number and neuroinflammatory responses in 5xFAD mice, an Aß-overexpressing model of AD. Abemaciclib mesylate also inhibited Aß accumulation by enhancing the activity and protein levels of the Aß-degrading enzyme neprilysin and the α-secretase ADAM17 and decreasing the protein level of the γ-secretase PS-1 in young and aged 5xFAD mice. Importantly, abemaciclib mesylate suppressed tau phosphorylation in 5xFAD mice and tau-overexpressing PS19 mice by reducing DYRK1A and/or p-GSK3ß levels. In wild-type (WT) mice injected with lipopolysaccharide (LPS), abemaciclib mesylate rescued spatial and recognition memory and restored dendritic spine number. In addition, abemaciclib mesylate downregulated LPS-induced microglial/astrocytic activation and proinflammatory cytokine levels in WT mice. In BV2 microglial cells and primary astrocytes, abemaciclib mesylate suppressed LPS-mediated proinflammatory cytokine levels by downregulating AKT/STAT3 signaling. Taken together, our results support repurposing the anticancer drug, CDK4/6 inhibitor abemaciclib mesylate as a multitarget therapeutic for AD pathologies.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Cognición , Citocinas , Modelos Animales de Enfermedad , Lipopolisacáridos , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Transducción de Señal , Quinasas DyrK
10.
Exp Neurobiol ; 32(1): 42-55, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36919335

RESUMEN

Amyloid precursor protein (APP) plays an important role in the pathogenesis of Alzheimer's disease (AD), but the normal function of APP at synapses is poorly understood. We and others have found that APP interacts with Reelin and that each protein is individually important for dendritic spine formation, which is associated with learning and memory, in vitro. However, whether Reelin acts through APP to modulate dendritic spine formation or synaptic function remains unknown. In the present study, we found that Reelin treatment significantly increased dendritic spine density and PSD-95 puncta number in primary hippocampal neurons. An examination of the molecular mechanisms by which Reelin regulates dendritic spinogenesis revealed that Reelin enhanced hippocampal dendritic spine formation in a Ras/ERK/CREB signaling-dependent manner. Interestingly, Reelin did not increase dendritic spine number in primary hippocampal neurons when APP expression was reduced or in vivo in APP knockout (KO) mice. Taken together, our data are the first to demonstrate that Reelin acts cooperatively with APP to modulate dendritic spine formation and suggest that normal APP function is critical for Reelin-mediated dendritic spinogenesis at synapses.

11.
Mol Brain ; 16(1): 7, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36647152

RESUMEN

Studies of mouse models of Alzheimer's disease (AD) have demonstrated that nitric oxide synthase 2 (NOS2) is involved in AD pathology. However, the effects of NOS2 on the pathology of Parkinson's disease (PD) are not well studied. To address this gap, we examined the impact of NOS2 on disease-associated phenotypes in a mouse model of PD. Transgenic mice carrying the A53T mutation of α-synuclein (SynA53T) and newly generated double transgenic mice with deletion of NOS2 (SynA53T/NOS2-/-) were used. Compared with SynA53T mice, the loss of nos2 decreased α-synuclein phosphorylation at serine 129 and reduced α-synuclein-induced microglial and astrocyte activation in SynA53T/NOS-/- mice. Additionally, neuroinflammation-related gene clusters in the deep mesencephalic nucleus (DpMe) were altered in SynA53T/NOS-/- mice compared with SynA53T mice. Taken together, our results suggest that deletion of nos2 alleviates α-synuclein pathology and α-synuclein-associated neuroinflammatory responses in the brain.


Asunto(s)
Óxido Nítrico Sintasa de Tipo II , Enfermedad de Parkinson , Sinucleinopatías , Animales , Ratones , alfa-Sinucleína/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Óxido Nítrico Sintasa de Tipo II/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología
12.
Cells ; 11(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36497159

RESUMEN

Amyloid-ß (Aß) deposition and Aß-induced neurodegeneration appear in the retina and retinorecipient areas in the early stages of Alzheimer's disease (AD). Although these Aß-related changes in the retina cause damage to the visual functions, no studies have yet revealed the alterations in the visual pathways of AD. Therefore, we investigated the alterations of visual circuits in the AD mouse model using anterograde tracer cholera toxin ß subunits (CTß). Moreover, we investigated the Aß accumulation in the retina and retinorecipient areas and the neuronal loss, and synaptic degeneration in retinorecipient areas by immunofluorescent staining of 4- and 12-month-old female 5XFAD transgenic mice. Our results demonstrated that Aß accumulation and neurodegeneration occurred in the retina and retinorecipient regions of early and late stages of the 5XFAD mice. Retinal efferents to the suprachiasmatic nucleus and lateral geniculate nucleus were impaired in the early stage of AD. Moreover, retinal connections to the dorsal lateral geniculate nucleus and superior colliculus were degenerated in the late-stage of AD. These findings reveal the Aß-related pathology induced visual circuit disturbances at the mesoscale level in both the early and late stages of AD and provide anatomical and functional insights into the visual circuitry of AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Femenino , Enfermedad de Alzheimer/metabolismo , Vías Visuales , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad
13.
Front Immunol ; 13: 903309, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36341365

RESUMEN

The FDA-approved EGFR/HER2 inhibitor varlitinib inhibits tumor growth and is used in cancer treatment. However, the neuroinflammatory response associated with EGFR/HER2 and its underlying mechanism have not been elucidated. This study evaluates the impact of varlitinib on LPS- and tau-mediated neuroinflammatory responses for the first time. In BV2 microglial cells, varlitinib reduced LPS-stimulated il-1ß and/or inos mRNA levels and downstream AKT/FAK/NF-kB signaling. Importantly, varlitinib significantly diminished LPS-mediated microglial nlrp3 inflammasome activation in BV2 microglial cells. In primary astrocytes, varlitinib downregulated LPS-evoked astroglial il-1ß mRNA levels, AKT signaling, and nlrp3 inflammasome activation. In LPS-treated wild-type mice, varlitinib significantly reduced LPS-stimulated glial activation and IL-1ß/NLRP3 inflammasome formation. Moreover, varlitinib significantly reduced micro- and astroglial activation and tau hyperphosphorylation in 3-month-old tau-overexpressing PS19 mice by downregulating tau kinase DYRK1A levels. However, in 6-month-old tau-overexpressing PS19 mice, varlitinib only significantly diminished astroglial activation and tau phosphorylation at Thr212/Ser214. Taken together, our findings suggest that varlitinib has therapeutic potential for LPS- and tau-induced neuroinflammatory responses and the early stages of tau pathology.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Lipopolisacáridos/farmacología , Proteínas Proto-Oncogénicas c-akt , Inflamación/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero , Receptores ErbB
14.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36362394

RESUMEN

Ca2+ signaling is implicated in the transition between microglial surveillance and activation. Several L-type Ca2+ channel blockers (CCBs) have been shown to ameliorate neuroinflammation by modulating microglial activity. In this study, we examined the effects of the L-type CCB felodipine on LPS-mediated proinflammatory responses. We found that felodipine treatment significantly diminished LPS-evoked proinflammatory cytokine levels in BV2 microglial cells in an L-type Ca2+ channel-dependent manner. In addition, felodipine leads to the inhibition of TLR4/AKT/STAT3 signaling in BV2 microglial cells. We further examined the effects of felodipine on LPS-stimulated neuroinflammation in vivo and found that daily administration (3 or 7 days, i.p.) significantly reduced LPS-mediated gliosis and COX-2 and IL-1ß levels in C57BL/6 (wild-type) mice. Moreover, felodipine administration significantly reduced chronic neuroinflammation-induced spatial memory impairment, dendritic spine number, and microgliosis in C57BL/6 mice. Taken together, our results suggest that the L-type CCB felodipine could be repurposed for the treatment of neuroinflammation/cognitive function-associated diseases.


Asunto(s)
Lipopolisacáridos , Memoria Espacial , Ratones , Animales , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Felodipino/efectos adversos , Espinas Dendríticas , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Microglía
15.
J Neuroinflammation ; 19(1): 187, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35841100

RESUMEN

BACKGROUND: In chronic myelogenous leukemia, reciprocal translocation between chromosome 9 and chromosome 22 generates a chimeric protein, Bcr-Abl, that leads to hyperactivity of tyrosine kinase-linked signaling transduction. The therapeutic agent nilotinib inhibits Bcr-Abl/DDR1 and can cross the blood-brain barrier, but its potential impact on neuroinflammatory responses and cognitive function has not been studied in detail. METHODS: The effects of nilotinib in vitro and in vivo were assessed by a combination of RT-PCR, real-time PCR, western blotting, ELISA, immunostaining, and/or subcellular fractionation. In the in vitro experiments, the effects of 200 ng/mL LPS or PBS on BV2 microglial cells, primary microglia or primary astrocytes pre- or post-treated with 5 µM nilotinib or vehicle were evaluated. The in vivo experiments involved wild-type mice administered a 7-day course of daily injections with 20 mg/kg nilotinib (i.p.) or vehicle before injection with 10 mg/kg LPS (i.p.) or PBS. RESULTS: In BV2 microglial cells, pre- and post-treatment with nilotinib altered LPS-induced proinflammatory/anti-inflammatory cytokine mRNA levels by suppressing AKT/P38/SOD2 signaling. Nilotinib treatment also significantly downregulated LPS-stimulated proinflammatory cytokine levels in primary microglia and primary astrocytes by altering P38/STAT3 signaling. Experiments in wild-type mice showed that nilotinib administration affected LPS-mediated microglial/astroglial activation in a brain region-specific manner in vivo. In addition, nilotinib significantly reduced proinflammatory cytokine IL-1ß, IL-6 and COX-2 levels and P38/STAT3 signaling in the brain in LPS-treated wild-type mice. Importantly, nilotinib treatment rescued LPS-mediated spatial working memory impairment and cortical dendritic spine number in wild-type mice. CONCLUSIONS: Our results indicate that nilotinib can modulate neuroinflammatory responses and cognitive function in LPS-stimulated wild-type mice.


Asunto(s)
Disfunción Cognitiva , Lipopolisacáridos , Sistema de Señalización de MAP Quinasas , Pirimidinas , Factor de Transcripción STAT3 , Animales , Disfunción Cognitiva/metabolismo , Citocinas/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Microglía/metabolismo , Pirimidinas/farmacología , Factor de Transcripción STAT3/metabolismo
16.
Mol Brain ; 15(1): 63, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35850693

RESUMEN

The cholinesterase inhibitor donepezil is used to improve Aß pathology and cognitive function in patients with Alzheimer's disease (AD). However, the impact of donepezil on tau pathology is unclear. Thus, we examined the effects of donepezil on Aß and tau pathology in 5xFAD mice (a model of AD) in this study. We found that intraperitoneal injection of donepezil (1 mg/kg, i.p.) exhibited significant reductions in Aß plaque number in the cortex and hippocampal DG region. In addition, donepezil treatment (1 mg/kg, i.p.) reduced Aß-mediated microglial and, to a lesser extent, astrocytic activation in 5xFAD mice. However, neither intraperitoneal/oral injection of donepezil nor oral injection of rivastigmine altered tau phosphorylation at Thr212/Ser214 (AT100), Thr396, and Thr231 in 5xFAD mice. Surprisingly, we observed that intraperitoneal/oral injection of donepezil treatment significantly increased tau phosphorylation at Thr212 in 5xFAD mice. Taken together, these data suggest that intraperitoneal injection of donepezil suppresses Aß pathology but not tau pathology in 5xFAD mice.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Donepezilo/farmacología , Donepezilo/uso terapéutico , Ratones , Ratones Transgénicos , Placa Amiloide
17.
Front Immunol ; 13: 749336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222363

RESUMEN

Idebenone is an analogue of coenzyme Q10, an electron donor in the mitochondrial electron transport chain, and thus may function as an antioxidant to facilitate mitochondrial function. However, whether idebenone modulates LPS- and Aß-mediated neuroinflammatory responses and cognitive function in vivo is unknown. The present study explored the effects of idebenone on LPS- or Aß-mediated neuroinflammation, learning and memory and the underlying molecular mechanisms in wild-type (WT) mice and 5xFAD mice, a mouse model of Alzheimer's disease (AD). In male and female WT mice, idebenone upregulated neuroprotective NRF2 expression, rescued LPS-induced spatial and recognition memory impairments, and reduced NLRP3 priming and subsequent neuroinflammation. Moreover, idebenone downregulated LPS-mediated neurogliosis, reactive oxygen species (ROS) levels, and mitochondrial function in BV2 microglial cells and primary astrocytes by inhibiting NLRP3 inflammasome activation. In 5xFAD mice, idebenone increased neuroprotective NRF2 expression and improved amyloid beta (Aß)-induced cognitive dysfunction. Idebenone downregulated Aß-mediated gliosis and proinflammatory cytokine levels in 5xFAD mice by modulating the vicious NLRP3/caspase-1/IL-1ß neuroinflammation cycle. Taken together, our results suggest that idebenone targets neuroglial NLRP3 inflammasome activation and therefore may have neuroprotective effects and inhibit the pathological progression of neuroinflammation-related diseases.


Asunto(s)
Péptidos beta-Amiloides , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Cognición , Femenino , Inflamasomas/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ubiquinona/análogos & derivados
18.
Front Aging Neurosci ; 13: 754123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776934

RESUMEN

The sulfonylurea drug gliquidone is FDA approved for the treatment of type 2 diabetes. Binding of gliquidone to ATP-sensitive potassium channels (SUR1, Kir6 subunit) in pancreatic ß-cells increases insulin release to regulate blood glucose levels. Diabetes has been associated with increased levels of neuroinflammation, and therefore the potential effects of gliquidone on micro- and astroglial neuroinflammatory responses in the brain are of interest. Here, we found that gliquidone suppressed LPS-mediated microgliosis, microglial hypertrophy, and proinflammatory cytokine COX-2 and IL-6 levels in wild-type mice, with smaller effects on astrogliosis. Importantly, gliquidone downregulated the LPS-induced microglial NLRP3 inflammasome and peripheral inflammation in wild-type mice. An investigation of the molecular mechanism of the effects of gliquidone on LPS-stimulated proinflammatory responses showed that in BV2 microglial cells, gliquidone significantly decreased LPS-induced proinflammatory cytokine levels and inhibited ERK/STAT3/NF-κB phosphorylation by altering NLRP3 inflammasome activation. In primary astrocytes, gliquidone selectively affected LPS-mediated proinflammatory cytokine expression and decreased STAT3/NF-κB signaling in an NLRP3-independent manner. These results indicate that gliquidone differentially modulates LPS-induced microglial and astroglial neuroinflammation in BV2 microglial cells, primary astrocytes, and a model of neuroinflammatory disease.

19.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638977

RESUMEN

The acetylcholinesterase inhibitors donepezil and rivastigmine have been used as therapeutic drugs for Alzheimer's disease (AD), but their effects on LPS- and Aß-induced neuroinflammatory responses and the underlying molecular pathways have not been studied in detail in vitro and in vivo. In the present study, we found that 10 or 50 µM donepezil significantly decreased the LPS-induced increases in the mRNA levels of a number of proinflammatory cytokines in BV2 microglial cells, whereas 50 µM rivastigmine significantly diminished only LPS-stimulated IL-6 mRNA levels. In subsequent experiments in primary astrocytes, donepezil suppressed only LPS-stimulated iNOS mRNA levels. To identify the molecular mechanisms by which donepezil regulates LPS-induced neuroinflammation, we examined whether donepezil alters LPS-stimulated proinflammatory responses by modulating LPS-induced downstream signaling and the NLRP3 inflammasome. Importantly, we found that donepezil suppressed LPS-induced AKT/MAPK signaling, the NLRP3 inflammasome, and transcription factor NF-kB/STAT3 phosphorylation to reduce neuroinflammatory responses. In LPS-treated wild-type mice, a model of neuroinflammatory disease, donepezil significantly attenuated LPS-induced microglial activation, microglial density/morphology, and proinflammatory cytokine COX-2 and IL-6 levels. In a mouse model of AD (5xFAD mice), donepezil significantly reduced Aß-induced microglial and astrocytic activation, density, and morphology. Taken together, our findings indicate that donepezil significantly downregulates LPS- and Aß-evoked neuroinflammatory responses in vitro and in vivo and may be a therapeutic agent for neuroinflammation-associated diseases such as AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/efectos adversos , Inhibidores de la Colinesterasa/administración & dosificación , Donepezilo/administración & dosificación , Inflamasomas/metabolismo , Lipopolisacáridos/efectos adversos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Rivastigmina/farmacología , Factor de Transcripción STAT3/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/genética , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo
20.
Biology (Basel) ; 10(9)2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34571815

RESUMEN

The coenzyme Q10 analogue idebenone is an FDA-approved antioxidant that can cross the blood-brain barrier (BBB). The effects of idebenone on the pathology of Alzheimer's disease (AD) and the underlying molecular mechanisms have not been comprehensively investigated. Here, we examined the impact of idebenone treatment on AD pathology in 5xFAD mice, a model of AD. Idebenone significantly downregulated Aß plaque number via multi-directional pathways in this model. Specifically, idebenone reduced the RAGE/caspase-3 signaling pathway and increased levels of the Aß degradation enzyme NEP and α-secretase ADAM17 in 5xFAD mice. Importantly, idebenone significantly suppressed tau kinase p-GSK3ßY216 levels, thereby inhibiting tau hyperphosphorylation at Thr231 and total tau levels in 5xFAD mice. Taken together, the present study indicates that idebenone modulates amyloidopathy and tauopathy in 5xFAD mice, suggesting therapeutic potential for AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA