Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ALTEX ; 38(1): 73-81, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32591837

RESUMEN

Microcystins (MC) are a group of cyanobacterial toxins that comprises MC-LF and other cyclic heptapeptides, best known as potent hepatotoxicants. Cell culture and epidemiological studies suggest that MC might also affect the nervous system when there is systemic exposure, e.g., via drinking water or food. We asked whether in vitro studies with human neurons could provide estimates on the neurotoxicity hazard of MC-LF. First, we used LUHMES neurons, a well-established test system for neurotoxicants and neuropathological processes. These central nervous system cells express OATP1A2, a presumed carrier of MC-LF, and we observed selective neurite toxicity in the µM range (EC20 = 3.3 µM ≈ 3.3 µg/mL). Transcriptome changes pointed towards attenuated cell maintenance and biosynthetic processes. Prolonged exposure for up to four days did not increase toxicity. As a second model, we used human dorsal root ganglia-like neurons. These peripheral nervous system cells represent parts of the nervous system not protected by the blood-brain barrier in humans. Toxicity was observed in a similar concentration range (EC20 = 7.4 µM). We conclude that MC-LF poses a potential neurotoxic hazard in humans. The adverse effect concentrations observed here were orders of magnitude higher than those presumed to be encountered after normal nutritional or environmental exposure. However, the low µM concentrations found to be toxic are close to levels that may be reached after very excessive algae supplement intake.


Asunto(s)
Microcistinas/toxicidad , Células-Madre Neurales/efectos de los fármacos , Alternativas a las Pruebas en Animales/métodos , Línea Celular , Humanos , Pruebas de Toxicidad
2.
Adv Biosyst ; 4(11): e2000079, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33073544

RESUMEN

Drug-drug interactions (DDIs) occur when the pharmacological activity of one drug is altered by a second drug. As multimorbidity and polypharmacotherapy are becoming more common due to the increasing age of the population, the risk of DDIs is massively increasing. Therefore, in vitro testing methods are needed to capture such multiorgan events. Here, a scalable, gravity-driven microfluidic system featuring 3D microtissues (MTs) that represent different organs for the prediction of drug-drug interactions is used. Human liver microtissues (hLiMTs) are combined with tumor microtissues (TuMTs) and treated with drug combinations that are known to cause DDIs in vivo. The testing system is able to capture and quantify DDIs upon co-administration of the anticancer prodrugs cyclophosphamide or ifosfamide with the antiretroviral drug ritonavir. Dosage of ritonavir inhibits hepatic metabolization of the two prodrugs to different extents and decreases their efficacy in acting on TuMTs. The flexible MT compartment design of the system, the use of polystyrene as chip material, and the assembly of several chips in stackable plates offer the potential to significantly advance preclinical substance testing. The possibility of testing a broad variety of drug combinations to identify possible DDIs will improve the drug development process and increase patient safety.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Interacciones Farmacológicas , Técnicas Analíticas Microfluídicas , Análisis de Matrices Tisulares/métodos , Técnicas de Cultivo de Tejidos/métodos , Supervivencia Celular/efectos de los fármacos , Células HCT116 , Inhibidores de la Proteasa del VIH/farmacología , Humanos , Hígado/citología , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Ritonavir/farmacología
3.
ALTEX ; 36(3): 505, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31329253

RESUMEN

In this manuscript, which appeared in ALTEX 35 , 235-253 ( doi:10.14573/altex.1712182 ), the Acknowledgements should read: This work was supported by the Land BW, the Doerenkamp-Zbinden Foundation, the DFG (RTG1331, KoRS-CB), the BMBF (NeuriTox), and it has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 681002 (EU-ToxRisk).

4.
ALTEX ; 35(2): 235-253, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29423527

RESUMEN

The (developmental) neurotoxicity hazard is still unknown for most chemicals. Establishing a test battery covering most of the relevant adverse outcome pathways may close this gap, without requiring a huge animal experimentation program. Ideally, each of the assays would cover multiple mechanisms of toxicity. One candidate test is the human LUHMES cell-based NeuriTox test. To evaluate its readiness for larger-scale testing, a proof of concept library assembled by the U.S. National Toxicology Program (NTP) was screened. Of the 75 unique compounds, seven were defined as specifically neurotoxic after the hit-confirmation phase and additional ten compounds were generally cytotoxic within the concentration range of up to 20 micromolar. As complementary approach, the library was screened in the PeriTox test, which identifies toxicants affecting the human peripheral nervous system. Of the eight PeriTox hits, five were similar to the NeuriTox hits: rotenone, colchicine, diethylstilbestrol, berberine chloride, and valinomycin. The unique NeuriTox hit, methyl-phenylpyridinium (MPP+) is known from in vivo studies to affect only dopaminergic neurons (which LUHMES cells are). Conversely, the known peripheral neurotoxicant acrylamide was picked up in the PeriTox, but not in the NeuriTox assay. All of the five common hits had also been identified in the published neural crest migration (cMINC) assay, while none of them emerged as cardiotoxicant in a previous screen using the same library. These comparative data suggest that complementary in vitro tests can pick up a broad range of toxicants, and that multiple test results might help to predict organ specificity patterns.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Pruebas de Toxicidad/métodos , Células Cultivadas , Humanos
5.
Arch Toxicol ; 91(2): 839-864, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27188386

RESUMEN

Stem cell-based in vitro test systems can recapitulate specific phases of human development. In the UKK test system, human pluripotent stem cells (hPSCs) randomly differentiate into cells of the three germ layers and their derivatives. In the UKN1 test system, hPSCs differentiate into early neural precursor cells. During the normal differentiation period (14 days) of the UKK system, 570 genes [849 probe sets (PSs)] were regulated >fivefold; in the UKN1 system (6 days), 879 genes (1238 PSs) were regulated. We refer to these genes as 'developmental genes'. In the present study, we used genome-wide expression data of 12 test substances in the UKK and UKN1 test systems to understand the basic principles of how chemicals interfere with the spontaneous transcriptional development in both test systems. The set of test compounds included six histone deacetylase inhibitors (HDACis), six mercury-containing compounds ('mercurials') and thalidomide. All compounds were tested at the maximum non-cytotoxic concentration, while valproic acid and thalidomide were additionally tested over a wide range of concentrations. In total, 242 genes (252 PSs) in the UKK test system and 793 genes (1092 PSs) in the UKN1 test system were deregulated by the 12 test compounds. We identified sets of 'diagnostic genes' appropriate for the identification of the influence of HDACis or mercurials. Test compounds that interfered with the expression of developmental genes usually antagonized their spontaneous development, meaning that up-regulated developmental genes were suppressed and developmental genes whose expression normally decreases were induced. The fraction of compromised developmental genes varied widely between the test compounds, and it reached up to 60 %. To quantitatively describe disturbed development on a genome-wide basis, we recommend a concept of two indices, 'developmental potency' (D p) and 'developmental index' (D i), whereby D p is the fraction of all developmental genes that are up- or down-regulated by a test compound, and D i is the ratio of overrepresentation of developmental genes among all genes deregulated by a test compound. The use of D i makes hazard identification more sensitive because some compounds compromise the expression of only a relatively small number of genes but have a high propensity to deregulate developmental genes specifically, resulting in a low D p but a high D i. In conclusion, the concept based on the indices D p and D i offers the possibility to quantitatively express the propensity of test compounds to interfere with normal development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células Madre/efectos de los fármacos , Pruebas de Toxicidad/métodos , Transcriptoma/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/efectos de los fármacos , Humanos , Ratones , Células Madre Pluripotentes/efectos de los fármacos , Células Madre/fisiología , Teratógenos/toxicidad , Transcriptoma/genética
6.
Arch Toxicol ; 91(1): 407-425, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26928308

RESUMEN

Halogen-free organophosphorus flame retardants are considered as replacements for the phased-out class of polybrominated diphenyl ethers (PBDEs). However, toxicological information on new flame retardants is still limited. Based on their excellent flame retardation potential, we have selected three novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivatives and assessed their toxicological profile using a battery of in vitro test systems in order to provide toxicological information before their large-scale production and use. PBDE-99, applied as a reference compound, exhibited distinct neuro-selective cytotoxicity at concentrations ≥10 µM. 6-(2-((6-oxido-6H-dibenzo[c,e][1,2]oxaphosphinin-6-yl)amino)ethoxy)-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (ETA-DOPO) and 6,6'-(ethane-1,2-diylbis(oxy))bis(6H-dibenzo[c,e][1,2]oxaphosphinine-6-oxide) (EG-DOPO) displayed adverse effects at concentrations >10 µM in test systems reflecting the properties of human central and peripheral nervous system neurons, as well as in a set of non-neuronal cell types. DOPO and its derivative 6,6'-(ethane-1,2-diylbis(azanediyl))bis(6H-dibenzo[c,e][1,2]oxaphosphinine-6-oxide) (EDA-DOPO) were neither neurotoxic, nor did they exhibit an influence on neural crest cell migration, or on the integrity of human skin equivalents. The two compounds furthermore displayed no inflammatory activation potential, nor did they affect algae growth or daphnia viability at concentrations ≤400 µM. Based on the superior flame retardation properties, biophysical features suited for use in polyurethane foams, and low cytotoxicity of EDA-DOPO, our results suggest that it is a candidate for the replacement of currently applied flame retardants.


Asunto(s)
Retardadores de Llama/toxicidad , Queratinocitos/efectos de los fármacos , Monocitos/efectos de los fármacos , Neuronas/efectos de los fármacos , Compuestos Organofosforados/toxicidad , Mucosa Respiratoria/efectos de los fármacos , Piel/efectos de los fármacos , Células A549 , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Óxidos P-Cíclicos/toxicidad , Células Madre Embrionarias Humanas/citología , Humanos , Queratinocitos/citología , Queratinocitos/inmunología , Queratinocitos/metabolismo , Monocitos/citología , Monocitos/inmunología , Monocitos/metabolismo , Neuronas/citología , Neuronas/inmunología , Neuronas/metabolismo , Células Madre Pluripotentes/citología , Mucosa Respiratoria/citología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Piel/citología , Piel/inmunología , Piel/metabolismo , Absorción Cutánea , Pruebas de Irritación de la Piel , Sus scrofa , Andamios del Tejido/química , Pruebas de Toxicidad
7.
Stem Cells Transl Med ; 5(4): 476-87, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26933043

RESUMEN

UNLABELLED: Safety sciences and the identification of chemical hazards have been seen as one of the most immediate practical applications of human pluripotent stem cell technology. Protocols for the generation of many desirable human cell types have been developed, but optimization of neuronal models for toxicological use has been astonishingly slow, and the wide, clinically important field of peripheral neurotoxicity is still largely unexplored. A two-step protocol to generate large lots of identical peripheral human neuronal precursors was characterized and adapted to the measurement of peripheral neurotoxicity. High content imaging allowed an unbiased assessment of cell morphology and viability. The computational quantification of neurite growth as a functional parameter highly sensitive to disturbances by toxicants was used as an endpoint reflecting specific neurotoxicity. The differentiation of cells toward dorsal root ganglia neurons was tracked in relation to a large background data set based on gene expression microarrays. On this basis, a peripheral neurotoxicity (PeriTox) test was developed as a first toxicological assay that harnesses the potential of human pluripotent stem cells to generate cell types/tissues that are not otherwise available for the prediction of human systemic organ toxicity. Testing of more than 30 chemicals showed that human neurotoxicants and neurite growth enhancers were correctly identified. Various classes of chemotherapeutic agents causing human peripheral neuropathies were identified, and they were missed when tested on human central neurons. The PeriTox test we established shows the potential of human stem cells for clinically relevant safety testing of drugs in use and of new emerging candidates. SIGNIFICANCE: The generation of human cells from pluripotent stem cells has aroused great hopes in biomedical research and safety sciences. Neurotoxicity testing is a particularly important application for stem cell-derived somatic cells, as human neurons are hardly available otherwise. Also, peripheral neurotoxicity has become of major concern in drug development for chemotherapy. The first neurotoxicity test method was established based on human pluripotent stem cell-derived peripheral neurons. The strategies exemplified in the present study of reproducible cell generation, cell function-based test system establishment, and assay validation provide the basis for a drug safety assessment on cells not available otherwise.


Asunto(s)
Contaminantes Ambientales/toxicidad , Ganglios Espinales/citología , Células-Madre Neurales/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Pruebas de Toxicidad/métodos , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Neuritas/efectos de los fármacos , Neuritas/fisiología , Neurogénesis/efectos de los fármacos , Neuronas/citología , Nervios Periféricos/efectos de los fármacos , Nervios Periféricos/fisiología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/fisiología , Rotenona/toxicidad
8.
Arch Toxicol ; 89(9): 1599-618, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26272509

RESUMEN

Test systems to identify developmental toxicants are urgently needed. A combination of human stem cell technology and transcriptome analysis was to provide a proof of concept that toxicants with a related mode of action can be identified and grouped for read-across. We chose a test system of developmental toxicity, related to the generation of neuroectoderm from pluripotent stem cells (UKN1), and exposed cells for 6 days to the histone deacetylase inhibitors (HDACi) valproic acid, trichostatin A, vorinostat, belinostat, panobinostat and entinostat. To provide insight into their toxic action, we identified HDACi consensus genes, assigned them to superordinate biological processes and mapped them to a human transcription factor network constructed from hundreds of transcriptome data sets. We also tested a heterogeneous group of 'mercurials' (methylmercury, thimerosal, mercury(II)chloride, mercury(II)bromide, 4-chloromercuribenzoic acid, phenylmercuric acid). Microarray data were compared at the highest non-cytotoxic concentration for all 12 toxicants. A support vector machine (SVM)-based classifier predicted all HDACi correctly. For validation, the classifier was applied to legacy data sets of HDACi, and for each exposure situation, the SVM predictions correlated with the developmental toxicity. Finally, optimization of the classifier based on 100 probe sets showed that eight genes (F2RL2, TFAP2B, EDNRA, FOXD3, SIX3, MT1E, ETS1 and LHX2) are sufficient to separate HDACi from mercurials. Our data demonstrate how human stem cells and transcriptome analysis can be combined for mechanistic grouping and prediction of toxicants. Extension of this concept to mechanisms beyond HDACi would allow prediction of human developmental toxicity hazard of unknown compounds with the UKN1 test system.


Asunto(s)
Inhibidores de Histona Desacetilasas/toxicidad , Placa Neural/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Transcriptoma , Perfilación de la Expresión Génica , Humanos , Placa Neural/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos
9.
ALTEX ; 31(4): 441-77, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25027500

RESUMEN

Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Dispositivos Laboratorio en un Chip , Animales , Bioensayo/instrumentación , Bioensayo/métodos , Modelos Biológicos
10.
Arch Toxicol ; 87(4): 721-33, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23203475

RESUMEN

Nanoparticles (NPs) have been shown to accumulate in organs, cross the blood-brain barrier and placenta, and have the potential to elicit developmental neurotoxicity (DNT). Here, we developed a human embryonic stem cell (hESC)-derived 3-dimensional (3-D) in vitro model that allows for testing of potential developmental neurotoxicants. Early central nervous system PAX6(+) precursor cells were generated from hESCs and differentiated further within 3-D structures. The 3-D model was characterized for neural marker expression revealing robust differentiation toward neuronal precursor cells, and gene expression profiling suggested a predominantly forebrain-like development. Altered neural gene expression due to exposure to non-cytotoxic concentrations of the known developmental neurotoxicant, methylmercury, indicated that the 3-D model could detect DNT. To test for specific toxicity of NPs, chemically inert polyethylene NPs (PE-NPs) were chosen. They penetrated deep into the 3-D structures and impacted gene expression at non-cytotoxic concentrations. NOTCH pathway genes such as HES5 and NOTCH1 were reduced in expression, as well as downstream neuronal precursor genes such as NEUROD1 and ASCL1. FOXG1, a patterning marker, was also reduced. As loss of function of these genes results in severe nervous system impairments in mice, our data suggest that the 3-D hESC-derived model could be used to test for Nano-DNT.


Asunto(s)
Cuerpos Embrioides/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Nanopartículas/toxicidad , Neuronas/efectos de los fármacos , Polietileno/toxicidad , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Inmovilizadas/efectos de los fármacos , Células Inmovilizadas/metabolismo , Células Inmovilizadas/patología , Cuerpos Embrioides/metabolismo , Cuerpos Embrioides/patología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Perfilación de la Expresión Génica , Humanos , Compuestos de Metilmercurio/toxicidad , Neuronas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...