Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682164

RESUMEN

BACKGROUND: Nipah virus (NiV), a highly lethal virus in humans, circulates in Pteropus bats throughout South and Southeast Asia. Difficulty in obtaining viral genomes from bats means we have a poor understanding of NiV diversity. METHODS: We develop phylogenetic approaches applied to the most comprehensive collection of genomes to date (N=257, 175 from bats, 73 from humans) from six countries over 22 years (1999-2020). We divide the four major NiV sublineages into 15 genetic clusters. Using Approximate Bayesian Computation fit to a spatial signature of viral diversity, we estimate the presence and the average size of genetic clusters per area. RESULTS: We find that, within any bat roost, there are an average of 2.4 co-circulating genetic clusters, rising to 5.5 clusters at areas of 1500-2000km2. We estimate that each genetic cluster occupies an average area of 1.3million km2 (95%CI: 0.6-2.3 million), with 14 clusters in an area of 100,000km2 (95%CI: 6-24). In the few sites in Bangladesh and Cambodia where genomic surveillance has been concentrated, we estimate that most clusters have been identified, but only ∼15% of overall NiV diversity has been uncovered. CONCLUSION: Our findings are consistent with entrenched co-circulation of distinct lineages, even within roosts, coupled with slow migration over larger spatial scales.

2.
medRxiv ; 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37502973

RESUMEN

Nipah virus (NiV), a highly lethal virus in humans, circulates silently in Pteropus bats throughout South and Southeast Asia. Difficulty in obtaining genomes from bats means we have a poor understanding of NiV diversity, including how many lineages circulate within a roost and the spread of NiV over increasing spatial scales. Here we develop phylogenetic approaches applied to the most comprehensive collection of genomes to date (N=257, 175 from bats, 73 from humans) from six countries over 22 years (1999-2020). In Bangladesh, where most human infections occur, we find evidence of increased spillover risk from one of the two co-circulating sublineages. We divide the four major NiV sublineages into 15 genetic clusters (emerged 20-44 years ago). Within any bat roost, there are an average of 2.4 co-circulating genetic clusters, rising to 5.5 clusters at areas of 1,500-2,000 km2. Using Approximate Bayesian Computation fit to a spatial signature of viral diversity, we estimate that each genetic cluster occupies an average area of 1.3 million km2 (95%CI: 0.6-2.3 million), with 14 clusters in an area of 100,000 km2 (95%CI: 6-24). In the few sites in Bangladesh and Cambodia where genomic surveillance has been concentrated, we estimate that most of the genetic clusters have been identified, but only ~15% of overall NiV diversity has been uncovered. Our findings are consistent with entrenched co-circulation of distinct lineages, even within individual roosts, coupled with slow migration over larger spatial scales.

3.
Sci Rep ; 11(1): 24145, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34921180

RESUMEN

Recent studies suggest that coronaviruses circulate widely in Southeast Asian bat species and that the progenitors of the SARS-Cov-2 virus could have originated in rhinolophid bats in the region. Our objective was to assess the diversity and circulation patterns of coronavirus in several bat species in Southeast Asia. We undertook monthly live-capture sessions and sampling in Cambodia over 17 months to cover all phases of the annual reproduction cycle of bats and test specifically the association between their age and CoV infection status. We additionally examined current information on the reproductive phenology of Rhinolophus and other bat species presently known to occur in mainland southeast China, Vietnam, Laos and Cambodia. Results from our longitudinal monitoring (573 bats belonging to 8 species) showed an overall proportion of positive PCR tests for CoV of 4.2% (24/573) in cave-dwelling bats from Kampot and 4.75% (22/463) in flying-foxes from Kandal. Phylogenetic analysis showed that the PCR amplicon sequences of CoVs (n = 46) obtained clustered in Alphacoronavirus and Betacoronavirus. Interestingly, Hipposideros larvatus sensu lato harbored viruses from both genera. Our results suggest an association between positive detections of coronaviruses and juvenile and immature bats in Cambodia (OR = 3.24 [1.46-7.76], p = 0.005). Since the limited data presently available from literature review indicates that reproduction is largely synchronized among rhinolophid and hipposiderid bats in our study region, particularly in its more seasonal portions (above 16° N), this may lead to seasonal patterns in CoV circulation. Overall, our study suggests that surveillance of CoV in insectivorous bat species in Southeast Asia, including SARS-CoV-related coronaviruses in rhinolophid bats, could be targeted from June to October for species exhibiting high proportions of juveniles and immatures during these months. It also highlights the need to develop long-term longitudinal surveys of bats and improve our understanding of their ecology in the region, for both biodiversity conservation and public health reasons.


Asunto(s)
Alphacoronavirus/genética , Betacoronavirus/genética , COVID-19/transmisión , Quirópteros/crecimiento & desarrollo , SARS-CoV-2/genética , Alphacoronavirus/clasificación , Animales , Asia Sudoriental/epidemiología , Betacoronavirus/clasificación , COVID-19/epidemiología , COVID-19/virología , Cambodia/epidemiología , Quirópteros/clasificación , Quirópteros/virología , Epidemias/prevención & control , Evolución Molecular , Genoma Viral/genética , Geografía , Humanos , Estudios Longitudinales , Masculino , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/fisiología , Especificidad de la Especie
4.
Emerg Microbes Infect ; 10(1): 1346-1357, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34139961

RESUMEN

Dengue virus (DENV) evolutionary dynamics are characterized by frequent DENV genotype/lineage replacements, potentially associated with changes in disease severity and human immunity. New Caledonia (NC) and Cambodia, two contrasted epidemiological settings, respectively experienced a DENV-1 genotype IV to I replacement in 2012 and a DENV-1 genotype I lineage 3-4 replacement in 2005-2007, both followed by a massive dengue outbreak. However, their underlying evolutionary drivers have not been elucidated. Here, we tested the hypothesis that these genotype/lineage switches reflected a higher transmission fitness of the replacing DENV genotype/lineage in the mosquito vector using in vivo competition experiments. For this purpose, field-derived Aedes aegypti from NC and Cambodia were orally challenged with epidemiologically relevant pairs of four DENV-1 genotype I and IV strains from NC or four DENV-1 genotype I lineage 3 and 4 strains from Cambodia, respectively. The relative transmission fitness of each DENV-1 genotype/lineage was measured by quantitative RT-PCR for infection, dissemination, and transmission rates. Results showed a clear transmission fitness advantage of the replacing DENV-1 genotype I from NC within the vector. A similar but more subtle pattern was observed for the DENV-1 lineage 4 replacement in Cambodia. Our results support the hypothesis that vector-driven selection contributed to the DENV-1 genotype/lineage replacements in these two contrasted epidemiological settings, and reinforce the idea that natural selection taking place within the mosquito vector plays an important role in DENV short-term evolutionary dynamics.


Asunto(s)
Aedes/virología , Virus del Dengue/genética , Dengue/virología , Mosquitos Vectores/virología , Selección Genética , Animales , Cambodia/epidemiología , Dengue/epidemiología , Dengue/transmisión , Virus del Dengue/fisiología , Brotes de Enfermedades , Aptitud Genética , Genotipo , Humanos , Nueva Caledonia/epidemiología , Filogenia , Saliva/virología
5.
Mov Ecol ; 8(1): 46, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33292573

RESUMEN

BACKGROUND: Improved understanding of the foraging ecology of bats in the face of ongoing habitat loss and modification worldwide is essential to their conservation and maintaining the substantial ecosystem services they provide. It is also fundamental to assessing potential transmission risks of zoonotic pathogens in human-wildlife interfaces. We evaluated the influence of environmental and behavioral variables on the foraging patterns of Pteropus lylei (a reservoir of Nipah virus) in a heterogeneous landscape in Cambodia. METHODS: We employed an approach based on animal-movement modeling, which comprised a path-segmentation method (hidden Markov model) to identify individual foraging-behavior sequences in GPS data generated by eight P. lylei. We characterized foraging localities, foraging activity, and probability of returning to a given foraging locality over consecutive nights. Generalized linear mixed models were also applied to assess the influence of several variables including proxies for energetic costs and quality of foraging areas. RESULTS: Bats performed few foraging bouts (area-restricted searches) during a given night, mainly in residential areas, and the duration of these decreased during the night. The probability of a bat revisiting a given foraging area within 48 h varied according to the duration previously spent there, its distance to the roost site, and the corresponding habitat type. We interpret these fine-scale patterns in relation to global habitat quality (including food-resource quality and predictability), habitat-familiarity and experience of each individual. CONCLUSIONS: Our study provides evidence that heterogeneous human-made environments may promote complex patterns of foraging-behavior and short-term re-visitation in fruit bat species that occur in such landscapes. This highlights the need for similarly detailed studies to understand the processes that maintain biodiversity in these environments and assess the potential for pathogen transmission in human-wildlife interfaces.

6.
Bull World Health Organ ; 98(8): 539-547, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32773899

RESUMEN

OBJECTIVE: To better understand the potential risks of Nipah virus emergence in Cambodia by studying different components of the interface between humans and bats. METHODS: From 2012 to 2016, we conducted a study at two sites in Kandal and Battambang provinces where fruit bats (Pteropus lylei) roost. We combined research on: bat ecology (reproductive phenology, population dynamics and diet); human practices and perceptions (ethnographic research and a knowledge, attitude and practice study); and Nipah virus circulation in bat and human populations (virus monitoring in bat urine and anti-Nipah-virus antibody detection in human serum). FINDINGS: Our results confirmed circulation of Nipah virus in fruit bats (28 of 3930 urine samples positive by polymerase chain reaction testing). We identified clear potential routes for virus transmission to humans through local practices, including fruit consumed by bats and harvested by humans when Nipah virus is circulating, and palm juice production. Nevertheless, in the serological survey of 418 potentially exposed people, none of them were seropositive to Nipah virus. Differences in agricultural practices among the regions where Nipah virus has emerged may explain the situation in Cambodia and point to actions to limit the risks of virus transmission to humans. CONCLUSION: Human practices are key to understanding transmission risks associated with emerging infectious diseases. Social science disciplines such as anthropology need to be integrated in health programmes targeting emerging infectious diseases. As bats are hosts of major zoonotic pathogens, such integrated studies would likely also help to reduce the risk of emergence of other bat-borne diseases.


Asunto(s)
Quirópteros/virología , Infecciones por Henipavirus/psicología , Infecciones por Henipavirus/transmisión , Virus Nipah/aislamiento & purificación , Animales , Antropología Cultural , Anticuerpos Antivirales , Cambodia/epidemiología , Femenino , Frutas , Conocimientos, Actitudes y Práctica en Salud , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/orina , Humanos , Masculino , Virus Nipah/inmunología , Factores de Riesgo , Zoonosis/virología
7.
Infect Genet Evol ; 78: 104130, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31785365

RESUMEN

The order Picornavirales is one of the most important viral orders in terms of virus diversity and genome organizations, ranging from a mono- or bi-cistronic expression strategies to the recently described poly-cistronic Polycipiviridae viruses. We report here the description and characterization of a novel picorna-like virus identified in rectal swabs of frugivorous bats in Cambodia that presents an unusual genome organization. Kandabadicivirus presents a unique genome architecture and distant phylogenetic relationship to the proposed Badiciviridae family. These findings highlight a high mosaicism of genome organizations among the Picornavirales.


Asunto(s)
Quirópteros/virología , Genoma Viral , Filogenia , Picornaviridae/genética , Regiones no Traducidas 3' , Animales , Cambodia , Proteínas de la Cápside/genética , Sistemas de Lectura Abierta , Picornaviridae/aislamiento & purificación , ARN Viral/química , Recto/virología , Secuenciación Completa del Genoma
8.
mSphere ; 4(6)2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694898

RESUMEN

Jingmenvirus is a recently identified group of segmented RNA viruses phylogenetically linked with unsegmented Flaviviridae viruses. Primarily identified in various tick genera originating in China, Jingmenvirus geographical distribution has rapidly expanded to cover Africa, South America, Caribbean, and Europe. The identification of Jingmen-related viruses in various mammals, including febrile humans, opens the possibility that Jingmenviruses may be novel tick-borne arboviruses. In this study, we aimed at increasing knowledge of the host range, genetic diversity, and geographical distribution of Jingmenviruses by reporting for the first time the identification of Jingmenviruses associated with Rhipicephalus microplus ticks originating in the French Antilles (Guadeloupe and Martinique islands), with Amblyomma testudinarium ticks in Lao PDR, and with Ixodes ricinus ticks in metropolitan France, and from urine of Pteropus lylei bats in Cambodia. Analyses of the relationships between the different Jingmenvirus genomes resulted in the identification of three main phylogenic subclades, each of them containing both tick-borne and mammal-borne strains, reinforcing the idea that Jingmenviruses may be considered as tick-borne arboviruses. Finally, we estimated the prevalence of Jingmenvirus-like infection using luciferase immunoprecipitation assay screening (LIPS) of asymptomatic humans and cattle highly exposed to tick bites. Among 70 French human, 153 Laotian human, and 200 Caribbean cattle sera tested, only one French human serum was found (slightly) positive, suggesting that the prevalence of Jingmenvirus human and cattle infections in these areas is probably low.IMPORTANCE Several arboviruses emerging as new pathogens for humans and domestic animals have recently raised public health concern and increased interest in the study of their host range and in detection of spillover events. Recently, a new group of segmented Flaviviridae-related viruses, the Jingmenviruses, has been identified worldwide in many invertebrate and vertebrate hosts, pointing out the issue of whether they belong to the arbovirus group. The study presented here combined whole-genome sequencing of three tick-borne Jingmenviruses and one bat-borne Jingmenvirus with comprehensive phylogenetic analyses and high-throughput serological screening of human and cattle populations exposed to these viruses to contribute to the knowledge of Jingmenvirus host range, geographical distribution, and mammalian exposure.


Asunto(s)
Flaviviridae/clasificación , Flaviviridae/aislamiento & purificación , Variación Genética , Especificidad del Huésped , Filogeografía , Animales , Bovinos , Quirópteros , Infecciones por Filoviridae/veterinaria , Infecciones por Filoviridae/virología , Flaviviridae/genética , Flaviviridae/crecimiento & desarrollo , Salud Global , Humanos , Garrapatas
9.
Microbiol Resour Announc ; 8(15)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975818

RESUMEN

Polycipiviridae is a recently recognized viral family within the order Picornavirales with unusual genome organization and phylogenetic placement. Viruses belonging to this family were only reported from arthropod hosts. We describe here the first full genome of a distant polycipivirus-related virus identified in frugivorous bat stools in Cambodia.

10.
Ecol Evol ; 9(7): 4181-4191, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31015997

RESUMEN

Bats are the second most species-rich Mammalian order and provide a wide range of ecologically important and economically significant ecosystem services. Nipah virus is a zoonotic emerging infectious disease for which pteropodid bats have been identified as a natural reservoir. In Cambodia, Nipah virus circulation has been reported in Pteropus lylei, but little is known about the spatial distribution of the species and the associated implications for conservation and public health.We deployed Global Positioning System (GPS) collars on 14 P. lylei to study their movements and foraging behavior in Cambodia in 2016. All of the flying foxes were captured from the same roost, and GPS locations were collected for 1 month. The habitats used by each bat were characterized through ground-truthing, and a spatial distribution model was developed of foraging sites.A total of 13,643 valid locations were collected during the study. Our study bats flew approximately 20 km from the roost each night to forage. The maximum distance traveled per night ranged from 6.88-105 km and averaged 28.3 km. Six of the 14 bats visited another roost for at least one night during the study, including one roost located 105 km away.Most foraging locations were in residential areas (53.7%) followed by plantations (26.6%). Our spatial distribution model confirmed that residential areas were the preferred foraging habitat for P. lylei, although our results should be interpreted with caution due to the limited number of individuals studied. Synthesis and applications: Our findings suggest that the use of residential and agricultural habitats by P. lylei may create opportunities for bats to interact with humans and livestock. They also suggest the importance of anthropogenic habitats for conservation of this vulnerable and ecologically important group in Cambodia. Our mapping of the probability of occurrence of foraging sites will help identification of areas where public awareness should be promoted regarding the ecosystem services provided by flying foxes and potential for disease transmission through indirect contact.

11.
PLoS One ; 13(4): e0196554, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29709036

RESUMEN

Cave roosting bats represent an important component of Southeast Asian bat diversity and are vulnerable to human disturbance during critical reproductive periods (pregnancy, lactation and weaning). Because dramatic growth of cave tourism in recent decades has raised concerns about impacts on cave bats in the region, we assessed the reproductive phenology of two insectivorous species (Hipposideros larvatus sensu lato and Taphozous melanopogon) at three caves in Cambodia for 23 months in 2014-2016 and evaluated human visitation to these sites between 2007 and 2014. Despite the differing foraging strategies employed by the two taxa, the temporal consistency observed in proportions of pregnant, lactating and juvenile bats indicates that their major birth peaks coincide with the time of greatest cave visitation annually, particularly for domestic visitors and namely during the Cambodian new year in April. They also reflect rainfall patterns and correspond with the reproductive phenology of insectivorous cave bats in Vietnam. These findings were predictable because 1) insect biomass and thus food availability for insectivorous bats are optimal for ensuring survival of young following this period, and 2) the Khmer new year is the most significant month for religious ceremonies and thus domestic cave visitation nationally, due to the abundance of Buddhist shrines and temples in Cambodian caves. While the impact of visitor disturbance on bat population recruitment cannot be empirically assessed due to lack of historical data, it is nonetheless likely to have been considerable and raises a conservation concern. Further, because growing evidence suggests that insectivorous cave bats exhibit reproductive synchrony across continental Southeast Asia where countless cave shrines are heavily frequented during April in Theravada Buddhist countries (e.g., Myanmar, Thailand, Cambodia and Laos), our results may have wider applicability in the region. We consequently advocate for increased emphasis on sustainable cave management practices in Cambodia and further investigations to determine whether our findings present a broader concern for cave bat conservation in Southeast Asia.


Asunto(s)
Cuevas , Quirópteros/fisiología , Conservación de los Recursos Naturales , Animales , Asia , Cambodia , Eulipotyphla , Conducta Alimentaria , Femenino , Geografía , Actividades Humanas , Humanos , Insectos , Lactancia , Masculino , Embarazo , Preñez , Reproducción , Estaciones del Año , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...