Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; 395: 111006, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38636792

RESUMEN

Members of the Signal Peptide-Peptidase (SPP) and Signal Peptide-Peptidase-like (SPPL) family are intramembrane aspartyl-proteases like their well-studied homologs, the presenilins, which comprise the catalytically active subunit within the γ-secretase complex. The lack of in vitro cleavage assays for SPPL proteases limited their biochemical characterization as well as substrate identification and validation. So far, SPPL proteases have been analyzed exclusively in intact cells or membranes, restricting mechanistic analysis to co-expression of enzyme and substrate variants colocalizing in the same subcellular compartments. We describe the details of developing an in vitro cleavage assay for SPPL2b and its model substrate TNFα and analyzed the influence of phospholipids, detergent supplements, and cholesterol on the SPPL2b in vitro activity. SPPL2b in vitro activity resembles mechanistic principles that have been observed in a cellular context, such as cleavage sites and consecutive turnover of the TNFα transmembrane domain. The novel in vitro cleavage assay is functional with separately isolated protease and substrate and amenable to a high throughput plate-based readout overcoming previous limitations and providing the basis for studying enzyme kinetics, catalytic activity, substrate recognition, and the characteristics of small molecule inhibitors. As a proof of concept, we present the first biochemical in vitro characterization of the SPPL2a and SPPL2b specific small molecule inhibitor SPL-707.


Asunto(s)
Ácido Aspártico Endopeptidasas , Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/metabolismo , Humanos , Ácido Aspártico Endopeptidasas/metabolismo , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/química , Especificidad por Sustrato , Proteolisis , Cinética , Colesterol/metabolismo
2.
Nat Struct Mol Biol ; 13(10): 895-901, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16964259

RESUMEN

The Mediator head module stimulates basal RNA polymerase II (Pol II) transcription and enables transcriptional regulation. Here we show that the head subunits Med8, Med18 and Med20 form a subcomplex (Med8/18/20) with two submodules. The highly conserved N-terminal domain of Med8 forms one submodule that binds the TATA box-binding protein (TBP) in vitro and is essential in vivo. The second submodule consists of the C-terminal region of Med8 (Med8C), Med18 and Med20. X-ray analysis of this submodule reveals that Med18 and Med20 form related beta-barrel folds. A conserved putative protein-interaction face on the Med8C/18/20 submodule includes sites altered by srb mutations, which counteract defects resulting from Pol II truncation. Our results and published data support a positive role of the Med8/18/20 subcomplex in initiation-complex formation and suggest that the Mediator head contains a multipartite TBP-binding site that can be modulated by transcriptional activators.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Proteína de Unión a TATA-Box/química , Factores de Transcripción/química , Transcripción Genética , Secuencia de Aminoácidos , Sitios de Unión , Dimerización , Complejo Mediador , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Proteína de Unión a TATA-Box/metabolismo , Factores de Transcripción/metabolismo
3.
Microbiology (Reading) ; 151(Pt 11): 3469-3482, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16272371

RESUMEN

VirB1-like proteins are believed to act as lytic transglycosylases, which facilitate the assembly of type IV secretion systems via localized lysis of the peptidoglycan. This paper presents the biochemical analysis of interactions of purified Brucella suis VirB1 with core components of the type IV secretion system. Genes encoding VirB1, VirB8, VirB9, VirB10 and VirB11 were cloned into expression vectors; the affinity-tagged proteins were purified from Escherichia coli, and analyses by gel filtration chromatography showed that they form monomers or homo-multimers. Analysis of protein-protein interactions by affinity precipitation revealed that VirB1 bound to VirB9 and VirB11. The results of bicistron expression experiments followed by gel filtration further supported the VirB1-VirB9 interaction. Peptide array mapping identified regions of VirB1 that interact with VirB8, VirB9 and VirB11 and underscored the importance of the C-terminus, especially for the VirB1-VirB9 interaction. The binding sites were localized on a structure model of VirB1, suggesting that different portions of VirB1 may interact with other VirB proteins during assembly of the type IV secretion machinery.


Asunto(s)
Proteínas Bacterianas/metabolismo , Brucella suis/enzimología , Glicosiltransferasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Brucella suis/genética , Brucella suis/metabolismo , Dimerización , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos , Glicosiltransferasas/química , Glicosiltransferasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica
4.
J Mol Biol ; 350(5): 833-42, 2005 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-15979093

RESUMEN

Cyclin C binds the cyclin-dependent kinases CDK8 and CDK3, which regulate mRNA transcription and the cell cycle, respectively. The crystal structure of cyclin C reveals two canonical five-helix repeats and a specific N-terminal helix. In contrast to other cyclins, the N-terminal helix is short, mobile, and in an exposed position that allows for interactions with proteins other than the CDKs. A model of the CDK8/cyclin C pair reveals two regions in the interface with apparently distinct roles. A conserved region explains promiscuous binding of cyclin C to CDK8 and CDK3, and a non-conserved region may be responsible for discrimination of CDK8 against other CDKs involved in transcription. A conserved and cyclin C-specific surface groove may recruit substrates near the CDK8 active site. Activation of CDKs generally involves phosphorylation of a loop at a threonine residue. In CDK8, this loop is longer and the threonine is absent, suggesting an alternative mechanism of activation that we discuss based on a CDK8-cyclin C model.


Asunto(s)
Quinasas Ciclina-Dependientes/química , Ciclinas/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Quinasa 8 Dependiente de Ciclina , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/fisiología , Ciclinas/metabolismo , Ciclinas/fisiología , Unión Proteica , Conformación Proteica , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Alineación de Secuencia
5.
Genes Dev ; 19(12): 1401-15, 2005 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15964991

RESUMEN

The C-terminal domain (CTD) of RNA polymerase II (Pol II) integrates nuclear events by binding proteins involved in mRNA biogenesis. CTD-binding proteins recognize a specific CTD phosphorylation pattern, which changes during the transcription cycle, due to the action of CTD-modifying enzymes. Structural and functional studies of CTD-binding and -modifying proteins now reveal some of the mechanisms underlying CTD function. Proteins recognize CTD phosphorylation patterns either directly, by contacting phosphorylated residues, or indirectly, without contact to the phosphate. The catalytic mechanisms of CTD kinases and phosphatases are known, but the basis for CTD specificity of these enzymes remains to be understood.


Asunto(s)
ARN Polimerasa II/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Escisión y Poliadenilación de ARNm
6.
J Biol Chem ; 280(18): 18171-8, 2005 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-15710619

RESUMEN

The Mediator of transcriptional regulation is the central coactivator that enables a response of RNA polymerase II (Pol II) to activators and repressors. We present the 3.0-A crystal structure of a highly conserved part of the Mediator, the MED7.MED21 (Med7.Srb7) heterodimer. The structure is very extended, spanning one-third of the Mediator length and almost the diameter of Pol II. It shows a four-helix bundle domain and a coiled-coil protrusion connected by a flexible hinge. Four putative protein binding sites on the surface allow for assembly of the Mediator middle module and for binding of the conserved subunit MED6, which is shown to bridge to the Mediator head module. A flexible MED6 bridge and the MED7.MED21 hinge could account for changes in overall Mediator structure upon binding to Pol II or activators. Our results support the idea that transcription regulation involves conformational changes within the general machinery.


Asunto(s)
Secuencia Conservada , Proteínas de Saccharomyces cerevisiae/química , Transactivadores/química , Factores de Transcripción/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dimerización , Leucina Zippers/genética , Complejo Mediador , Datos de Secuencia Molecular , Mapeo Peptídico , Estructura Secundaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...