Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 75(2): 515-526, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30047237

RESUMEN

BACKGROUND: Insecticide resistance management (IRM) practices that improve the sustainability of agricultural production systems are developed, but few studies address the challenges with their implementation and success rates of adoption. This study examined the effectiveness of a voluntary, extension-based program to increase grower adoption of IRM practices for onion thrips (Thrips tabaci) in onion. The program sought to increase the use of two important IRM practices: rotating classes of insecticides during the growing season and applying insecticides following an action threshold. RESULTS: Onion growers (n = 17) increased their adoption of both IRM practices over the 3-year study. Growers increased use of insecticide class rotation from 76% to 100% and use of the action threshold for determining whether to apply insecticides from 57% to 82%. Growers who always used action thresholds successfully controlled onion thrips infestations, applied significantly fewer insecticide applications (one to four fewer applications) and spent $148/ha less on insecticides compared with growers who rarely used the action threshold. Growers who regularly used action thresholds and rotated insecticide classes did so because they were primarily concerned about insecticide resistance development in thrips populations. CONCLUSION: Implementation of the IRM education program was successful, as adoption rates of both practices increased within 3 years. Growers were surprisingly most receptive to adopting these practices to mitigate insecticide resistance as opposed to saving money. Developing extension-based programs that involve regular and interactive meetings with growers may significantly increase the adoption of IRM and related integrated pest management tactics. © 2018 Society of Chemical Industry.


Asunto(s)
Protección de Cultivos/métodos , Control de Insectos/métodos , Resistencia a los Insecticidas , Insecticidas/farmacología , Thysanoptera/efectos de los fármacos , Animales , New York , Cebollas/crecimiento & desarrollo
2.
Pest Manag Sci ; 69(7): 841-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23197362

RESUMEN

BACKGROUND: Insecticides and fungicides are commonly co-applied in a tank mix to protect onions from onion thrips, Thrips tabaci Lindeman, and foliar pathogens. Co-applications reduce production costs, but past research shows that an insecticide's performance can be reduced when co-applied with a fungicide. An evaluation was made of the effects of co-applying spinetoram, abamectin and spirotetramat with commonly used fungicides, with and without the addition of a penetrating surfactant, on onion thrips control in onion fields. RESULTS: Co-applications of insecticides with chlorothalonil fungicides reduced thrips control by 25-48% compared with control levels provided by the insecticides alone in three of five trials. Inclusion of a penetrating surfactant at recommended rates with the insecticide and chlorothalonil fungicide did not consistently overcome this problem. Co-applications of insecticides with other fungicides did not interfere with thrips control. CONCLUSION: Co-applications of pesticides targeting multiple organisms should be examined closely to ensure that control of each organism is not compromised. To manage onion thrips in onion most effectively, insecticides should be applied with a penetrating surfactant, and should be applied separately from chlorothalonil fungicides.


Asunto(s)
Hongos/efectos de los fármacos , Fungicidas Industriales/farmacología , Insecticidas/farmacología , Cebollas/parasitología , Control de Plagas/métodos , Enfermedades de las Plantas/parasitología , Thysanoptera/efectos de los fármacos , Animales , Cebollas/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
3.
J Econ Entomol ; 104(3): 709-16, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21735885

RESUMEN

The Swede midge, Contarinia nasturtii Kieffer (Diptera: Cecidomyiidae), a common insect pest in Europe, is a newly invasive pest in North America that constitutes a major threat to cruciferous vegetable and field crops. Since its first identification in Ontario, Canada, in 2000, it has rapidly spread to 65 counties in the provinces of Ontario and Quebec and has recently been found in canola (one of two cultivars of rapeseed, Brassica napus L. and Brassica campestris L.) in the central Prairie region where the majority of Canada's 6.5 million ha (16 million acres) of canola is grown. The first detection of Swede midge in the United States was in 2004 in New York cabbage (Brassica oleracea L.), but it has now been found in four additional states. Here, we review the biology of Swede midge, its host plant range, distribution, economic impact, pest status, and management strategies. We provide insight into this insect's future potential to become an endemic pest of brassica crops in North America. We also proposed research needed to develop tactics for handling this invasive pest in brassica crops.


Asunto(s)
Dípteros/crecimiento & desarrollo , Control de Insectos , Control Biológico de Vectores , Animales , Brassica , Canadá , Productos Agrícolas , Dípteros/fisiología , Femenino , Preferencias Alimentarias , Geografía , Especies Introducidas , Masculino , Estados Unidos
4.
Plant Dis ; 95(6): 735-743, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30731932

RESUMEN

Iris yellow spot virus (IYSV) has been found consistently in commercial dry bulb onion fields throughout New York State since 2006. Yearly recurrence of IYSV may result from annual reintroductions of the virus or persistence of the virus in overwintering host plants. To identify potential sources of IYSV, we surveyed onion transplants imported into New York as well as volunteer onion plants and weeds using a double-antibody sandwich enzyme-linked immunosorbent assay. IYSV was not found in any of 1,097 transplant samples tested in 2007 but 4 of 760 (0.53%) transplant samples tested positive in 2008. IYSV was found in volunteer onion plants in 3 of 10 (30%) onion fields sampled in 2007, in 4 of 27 (15%) onion fields sampled in 2008, and in 6 of 12 (50%) onion cull piles sampled in 2008. In all, 4 of 17 weed species (i.e., chicory [Cichorium intybus], common burdock [Arctium minus], curly dock [Rumex crispus], and dandelion [Taraxacum officinale]), were confirmed to be infected with IYSV using serological and molecular testing methods. IYSV may be reintroduced annually into New York through imported onion transplants but it also persists in volunteer onion plants and selected weed species.

5.
Environ Entomol ; 39(2): 266-77, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20388253

RESUMEN

Onion thrips, Thrips tabaci (Lindeman) (Thysanoptera: Thripidae), can reduce onion bulb yield and transmit iris yellow spot virus (IYSV) (Bunyaviridae: Tospovirus), which can cause additional yield losses. In New York, onions are planted using seeds and imported transplants. IYSV is not seed transmitted, but infected transplants have been found in other U.S. states. Transplants are also larger than seeded onions early in the season, and thrips, some of which may be viruliferous, may preferentially colonize larger plants. Limited information is available on the temporal dynamics of IYSV and its vector in onion fields. In 2007 and 2008, T. tabaci and IYSV levels were monitored in six seeded and six transplanted fields. We found significantly more thrips in transplanted fields early in the season, but by the end of the season seeded fields had higher levels of IYSV. The percentage of sample sites with IYSV-infected plants remained low (<12%) until August, when infection levels increased dramatically in some fields. The densities of adult and larval thrips in August and September were better predictors of final IYSV levels than early season thrips densities. For 2007 and 2008, the time onions were harvested may have been more important in determining IYSV levels than whether the onions were seeded or transplanted. Viruliferous thrips emigrating from harvested onion fields into nonharvested ones may be increasing the primary spread of IYSV in late-harvested onions. Managing T. tabaci populations before harvest, and manipulating the spatial arrangement of fields based on harvest date could mitigate the spread of IYSV.


Asunto(s)
Agricultura , Interacciones Huésped-Patógeno , Insectos/virología , Cebollas/virología , Tospovirus/fisiología , Animales , Insectos Vectores/fisiología , Enfermedades de las Plantas/virología , Densidad de Población , Crecimiento Demográfico , Estaciones del Año , Semillas
6.
J Econ Entomol ; 99(4): 1310-5, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16937686

RESUMEN

The midge Contarinia nasturtii Kieffer (Diptera: Cecidomyiidae) was first confirmed in North America in Ontario, Canada, in 2000. The insect is now distributed throughout many counties in the provinces of Ontario and Québec. Nearly 1,200 farms in the northeastern United States that grow cruciferous vegetables are at risk for C. nasturtii infestation if this insect were to spread to that region. Over a period of 3 yr (2002-2004), approximately 3,000 ha of crops on 94 farms in western New York State was scouted for C. nasturtii, but none were found. In 2004, 42 experimental pheromone traps were placed in fields of cruciferous vegetables in eight counties. C. nasturtii males were captured at low levels (1-50 per trap / 8 wk) on four farms in Niagara County, but not at any other site. C. nasturtii larvae were found in plant tissue at one of the four farms. Insect specimens were identified by morphological methods, molecular methods, or both. This is the first confirmation of C. nasturtii in the United States, which we believe was made possible by the combined use of pheromone traps, morphological characters of trapped adults, and molecular methods. The early detection in New York presents an opportunity to implement measures to limit the spread and establishment of C. nasturtii across the state and into other regions of the United States.


Asunto(s)
Brassicaceae/parasitología , Dípteros , Animales , Larva , New York , Feromonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...