Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 58(18): 12146-12151, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31483621

RESUMEN

Starting from the recently published narrow band red phosphor SALON, a tunable oxonitride-phosphor can be derived by introducing disorder into the structure. To achieve this, the oxygen content of the reaction mixture is increased, thereby prohibiting the oxygen/nitrogen ordering observed in SALON. The resulting compound is isotypic to UCr4C4 and exhibits mixed oxygen/nitrogen and lithium/aluminum sites. Further variation of the oxygen/nitrogen ratio revealed that the structure remains stable over a wide range of compositions. The compound can therefore be described by the general sum formula SrAl2-xLi2+xO2+2xN2-2x with x ranging between 0.12 and 0.66. When doped with Eu2+, the title compound exhibits an intense luminescence upon excitation with blue light. The maximum of this emission varies depending on the oxygen content and can be tuned to values between 581 nm (x = 0.66) and 672 nm (x = 0.12).

2.
Nat Commun ; 10(1): 1824, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015399

RESUMEN

Innovative materials for phosphor converted white light-emitting diodes are in high demand owing to the huge potential of the light-emitting diode technology to reduce energy consumption worldwide. As the primary blue diode is already highly optimized, the conversion phosphors are of crucial importance for any further improvements. We report on the discovery of the high performance red phosphor Sr[Li2Al2O2N2]:Eu2+ meeting all requirements for a phosphor's optical properties. It combines the optimal spectral position for a red phosphor, as defined in the 2016 Research & Development-plan of the United States government, with an exceptionally small spectral full width at half maximum and excellent thermal stability. A white mid-power phosphor-converted light-emitting diode prototype utilising Sr[Li2Al2O2N2]:Eu2+ shows an increase of 16% in luminous efficacy compared to currently available commercial high colour-rendering phosphor-converted light-emitting diodes, while retaining excellent high colour rendition. This phosphor enables a big leap in energy efficiency of white emitting phosphor-converted light-emitting-diodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...