Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 23(18): 3906-3935, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37592893

RESUMEN

Over the past 15 years, the field of oncology research has witnessed significant progress in the development of new cell culture models, such as tumor-on-chip (ToC) systems. In this comprehensive overview, we present a multidisciplinary perspective by bringing together physicists, biologists, clinicians, and experts from pharmaceutical companies to highlight the current state of ToC research, its unique features, and the challenges it faces. To offer readers a clear and quantitative understanding of the ToC field, we conducted an extensive systematic analysis of more than 300 publications related to ToC from 2005 to 2022. ToC offer key advantages over other in vitro models by enabling precise control over various parameters. These parameters include the properties of the extracellular matrix, mechanical forces exerted on cells, the physico-chemical environment, cell composition, and the architecture of the tumor microenvironment. Such fine control allows ToC to closely replicate the complex microenvironment and interactions within tumors, facilitating the study of cancer progression and therapeutic responses in a highly representative manner. Importantly, by incorporating patient-derived cells or tumor xenografts, ToC models have demonstrated promising results in terms of clinical validation. We also examined the potential of ToC for pharmaceutical industries in which ToC adoption is expected to occur gradually. Looking ahead, given the high failure rate of clinical trials and the increasing emphasis on the 3Rs principles (replacement, reduction, refinement of animal experimentation), ToC models hold immense potential for cancer research. In the next decade, data generated from ToC models could potentially be employed for discovering new therapeutic targets, contributing to regulatory purposes, refining preclinical drug testing and reducing reliance on animal models.


Asunto(s)
Técnicas de Cultivo de Célula , Neoplasias , Humanos , Animales , Industria Farmacéutica , Matriz Extracelular , Microambiente Tumoral , Neoplasias/tratamiento farmacológico
3.
Cancer Gene Ther ; 28(5): 427-441, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32973362

RESUMEN

Rhabdomyosarcoma is a rare childhood soft tissue cancer whose cells resemble poorly differentiated skeletal muscle, expressing myogenic proteins including MYOGENIN. Alveolar rhabdomyosarcoma (ARMS) accounts for ~40% of cases and is associated with a poorer prognosis than other rhabdomyosarcoma variants, especially if containing the chromosomal translocation generating the PAX3-FOXO1 hybrid transcription factor. Metastasis is commonly present at diagnosis, with a five-year survival rate of <30%, highlighting the need for novel therapeutic approaches. We designed a suicide gene therapy by generating an ARMS-targeted promoter to drive the herpes simplex virus thymidine kinase (HSV-TK) suicide gene. We modified the minimal human MYOGENIN promoter by deleting both the NF1 and MEF3 transcription factor binding motifs to produce a promoter that is highly active in ARMS cells. Our bespoke ARMS promoter driving HSV-TK efficiently killed ARMS cells in vitro, but not skeletal myoblasts. Using a xenograft mouse model, we also demonstrated that ARMS promoter-HSV-TK causes apoptosis of ARMS cells in vivo. Importantly, combining our suicide gene therapy with standard chemotherapy agents used in the treatment of rhabdomyosarcoma, reduced the effective drug dose, diminishing deleterious side effects/patient burden. This modified, highly ARMS-specific promoter could provide a new therapy option for this difficult-to-treat cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genes Transgénicos Suicidas , Terapia Genética/métodos , Miogenina/genética , Regiones Promotoras Genéticas , Rabdomiosarcoma Alveolar/terapia , Animales , Apoptosis , Proliferación Celular , Femenino , Humanos , Ratones , Ratones SCID , Rabdomiosarcoma Alveolar/genética , Rabdomiosarcoma Alveolar/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cell Prolif ; 53(1): e12717, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31825138

RESUMEN

OBJECTIVES: DISHEVELLED, EGL-10, PLECKSTRIN (DEP) domain-containing 1B (DEPDC1B) promotes dismantling of focal adhesions and coordinates detachment events during cell cycle progression. DEPDC1B is overexpressed in several cancers with expression inversely correlated with patient survival. Here, we analysed the role of DEPDC1B in the regulation of murine and human skeletal myogenesis. MATERIALS AND METHODS: Expression dynamics of DEPDC1B were examined in murine and human myoblasts and rhabdomyosarcoma cells in vitro by RT-qPCR and/or immunolabelling. DEPDC1B function was mainly tested via siRNA-mediated gene knockdown. RESULTS: DEPDC1B was expressed in proliferating murine and human myoblasts, with expression then decreasing markedly during myogenic differentiation. SiRNA-mediated knockdown of DEPDC1B reduced myoblast proliferation and induced entry into myogenic differentiation, with deregulation of key cell cycle regulators (cyclins, CDK, CDKi). DEPDC1B and ß-catenin co-knockdown was unable to rescue proliferation in myoblasts, suggesting that DEPDC1B functions independently of canonical WNT signalling during myogenesis. DEPDC1B can also suppress RHOA activity in some cell types, but DEPDC1B and RHOA co-knockdown actually had an additive effect by both further reducing proliferation and enhancing myogenic differentiation. DEPDC1B was expressed in human Rh30 rhabdomyosarcoma cells, where DEPDC1B or RHOA knockdown promoted myogenic differentiation, but without influencing proliferation. CONCLUSION: DEPDC1B plays a central role in myoblasts by driving proliferation and preventing precocious myogenic differentiation during skeletal myogenesis in both mouse and human.


Asunto(s)
Proliferación Celular , Proteínas Activadoras de GTPasa/biosíntesis , Regulación Neoplásica de la Expresión Génica , Mioblastos Esqueléticos/metabolismo , Proteínas de Neoplasias/metabolismo , Rabdomiosarcoma/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Mioblastos Esqueléticos/patología , Rabdomiosarcoma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...