Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 140(11): 4079-4084, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29463086

RESUMEN

Tandem dye-sensitized photoelectrosynthesis cells are promising architectures for the production of solar fuels and commodity chemicals. A key bottleneck in the development of these architectures is the low efficiency of the photocathodes, leading to small current densities. Herein, we report a new design principle for highly active photocathodes that relies on the outer-sphere reduction of a substrate from the dye, generating an unstable radical that proceeds to the desired product. We show that the direct reduction of dioxygen from dye-sensitized nickel oxide (NiO) leads to the production of H2O2. In the presence of oxygen and visible light, NiO photocathodes sensitized with commercially available porphyrin, coumarin, and ruthenium dyes exhibit large photocurrents (up to 400 µA/cm2) near the thermodynamic potential for O2/H2O2 in near-neutral water. Bulk photoelectrolysis of porphyrin-sensitized NiO over 24 h results in millimolar concentrations of H2O2 with essentially 100% faradaic efficiency. To our knowledge, these are among the most active NiO photocathodes reported for multiproton/multielectron transformations. The photoelectrosynthesis proceeds by initial formation of superoxide, which disproportionates to H2O2. This disproportionation-driven charge separation circumvents the inherent challenges in separating electron-hole pairs for photocathodes tethered to inner sphere electrocatalysts and enables new applications for photoelectrosynthesis cells.

2.
Chem Sci ; 8(1): 541-549, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28616134

RESUMEN

The design of efficient hydrogen-evolving photocathodes for dye-sensitized photoelectrochemical cells (DSPECs) requires the incorporation of molecular light absorbing chromophores that are capable of delivering reducing equivalents to molecular proton reduction catalysts at rates exceeding those of charge recombination events. Here, we report the functionalization and kinetic analysis of a nanostructured NiO electrode with a modified perylene-3,4-dicarboximide chromophore (PMI) that is stabilized against degradation by atomic layer deposition (ALD) of thick insulating Al2O3 layers. Following photoinduced charge injection into NiO in high yield, films with Al2O3 layers demonstrate longer charge separated lifetimes as characterized via femtosecond transient absorption spectroscopy and photoelectrochemical techniques. The photoelectrochemical behavior of the electrodes in the presence of Co(ii) and Ni(ii) molecular proton reduction catalysts is examined, revealing reduction of both catalysts. Under prolonged irradiation, evolved H2 is directly observed by gas chromatography supporting the applicability of PMI embedded in Al2O3 as a photocathode architecture in DSPECs.

3.
Langmuir ; 33(37): 9298-9306, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28499092

RESUMEN

Often key to boosting photovoltages in photoelectrochemical and related solar-energy-conversion devices is the preferential slowing of rates of charge recombination-especially recombination at semiconductor/solution, semiconductor/polymer, or semiconductor/perovskite interfaces. In devices featuring TiO2 as the semiconducting component, a common approach to slowing recombination is to install an ultrathin metal oxide barrier layer or trap-passivating layer atop the semiconductor, with the needed layer often being formed via atomic layer deposition (ALD). A particularly promising barrier layer material is Nb2O5. Its conduction-band-edge potential ECB is low enough that charge injection from an adsorbed molecular, polymeric, or solid-state light absorber and into the semiconductor can still occur, but high enough that charge recombination is inhibited. While a few measurements of ECB have been reported for conventionally synthesized, bulk Nb2O5, none have been described for ALD-fabricated versions. Here, we specifically determine the conduction-band-edge energy of ALD-fabricated Nb2O5 relative to that of TiO2. We find that, while the value for ALD-Nb2O5 is indeed higher than that for TiO2, the difference is less than anticipated based on measurements of conventionally synthesized Nb2O5 and is dependent on the thermal history of the material. The implications of the findings for optimization of competing interfacial rate processes, and therefore photovoltages, are briefly discussed.

4.
Langmuir ; 32(46): 12005-12012, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27933878

RESUMEN

Transition metal sulfides show great promise for applications ranging from catalysis to electrocatalysis to photovoltaics due to their high stability and conductivity. Nickel sulfide, particularly known for its ability to electrochemically reduce protons to hydrogen gas nearly as efficiently as expensive noble metals, can be challenging to produce with certain surface site compositions or morphologies, e.g., conformal thin films. To this end, we employed atomic layer deposition (ALD), a preeminent method to fabricate uniform and conformal films, to construct thin films of nickel sulfide (NiSx) using bis(N,N'-di-tert-butylacetamidinato)nickel(II) (Ni(amd)2) vapor and hydrogen sulfide gas. Effects of experimental conditions such as pulse and purge times and temperature on the growth of NiSx were investigated. These revealed a wide temperature range, 125-225 °C, over which self-limiting NiSx growth can be observed. In situ quartz crystal microbalance (QCM) studies revealed conventional linear growth behavior for NiSx films, with a growth rate of 9.3 ng/cm2 per cycle being obtained. The ALD-synthesized films were characterized using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) methods. To assess the electrocatalyitic activity of NiSx for evolution of molecular hydrogen, films were grown on conductive-glass supports. Overpotentials at a current density of 10 mA/cm2 were recorded in both acidic and pH 7 phosphate buffer aqueous reaction media and found to be 440 and 576 mV, respectively, with very low NiSx loading. These results hint at the promise of ALD-grown NiSx materials as water-compatible electrocatalysts.

5.
ACS Appl Mater Interfaces ; 8(50): 34863-34869, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27935694

RESUMEN

Organic and porphyrin-based chromophores are prevalent in liquid-junction photovoltaic and photocatalytic solar-cell chemistry; however, their long-term air and light instability may limit their practicality in real world technologies. Here, we describe the protection of a zinc porphyrin dye, adsorbed on nanoparticulate TiO2, from air and light degradation by a protective coating of alumina grown with a previously developed post-treatment atomic layer deposition (ALD) technique. The protective Al2O3 ALD layer is deposited using dimethylaluminum isopropoxide as an Al source; in contrast to the ubiquitous ALD precursor trimethylaluminum, dimethylaluminum isopropoxide does not degrade the zinc porphyrin dye, as confirmed by UV-vis measurements. The growth of this protective ALD layer around the dye can be monitored by an in-reactor quartz crystal microbalance (QCM). Furthermore, greater than 80% of porphyrin light absorption is retained over ∼1 month of exposure to air and light when the protective coating is present, whereas almost complete loss of porphyrin absorption is observed in less than 2 days in the absence of the ALD protective layer. Applying the Al2O3 post-treatment technique to the TiO2-adsorbed dye allows the dye to remain in electronic contact with both the semiconductor surface and a surrounding electrolyte solution, the combination of which makes this technique promising for numerous other electrochemical photovoltaic and photocatalytic applications, especially those involving the dye-sensitized evolution of oxygen.

6.
ACS Appl Mater Interfaces ; 6(11): 8646-50, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24828106

RESUMEN

Dye-sensitized solar cell (DSC) redox shuttles other than triiodide/iodide have exhibited significantly higher charge transfer resistances at the dark electrode. This often results in poor fill factor, a severe detriment to device performance. Rather than moving to dark electrodes of untested materials that may have higher catalytic activity for specific shuttles, the surface area of platinum dark electrodes could be increased, improving the catalytic activity by simply presenting more catalyst to the shuttle solution. A new copper-based redox shuttle that experiences extremely high charge-transfer resistance at conventional Pt dark electrodes yields cells having fill-factors of less than 0.3. By replacing the standard Pt dark electrode with an inverse opal Pt electrode fabricated via atomic layer deposition, the dark electrode surface area is boosted by ca. 50-fold. The resulting increase in interfacial electron transfer rate (decrease in charge-transfer resistance) nearly doubles the fill factor and therefore the overall energy conversion efficiency, illustrating the utility of this high-area electrode for DSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA