Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
1.
Biochemistry ; 63(10): 1335-1346, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38690768

RESUMEN

Lipoxygenases (LOXs) from pathogenic fungi are potential therapeutic targets for defense against plant and select human diseases. In contrast to the canonical LOXs in plants and animals, fungal LOXs are unique in having appended N-linked glycans. Such important post-translational modifications (PTMs) endow proteins with altered structure, stability, and/or function. In this study, we present the structural and functional outcomes of removing or altering these surface carbohydrates on the LOX from the devastating rice blast fungus, M. oryzae, MoLOX. Alteration of the PTMs did notinfluence the active site enzyme-substrate ground state structures as visualized by electron-nuclear double resonance (ENDOR) spectroscopy. However, removal of the eight N-linked glycans by asparagine-to-glutamine mutagenesis nonetheless led to a change in substrate selectivity and an elevated activation energy for the reaction with substrate linoleic acid, as determined by kinetic measurements. Comparative hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis of wild-type and Asn-to-Gln MoLOX variants revealed a regionally defined impact on the dynamics of the arched helix that covers the active site. Guided by these HDX results, a single glycan sequon knockout was generated at position 72, and its comparative substrate selectivity from kinetics nearly matched that of the Asn-to-Gln variant. The cumulative data from model glyco-enzyme MoLOX showcase how the presence, alteration, or removal of even a single N-linked glycan can influence the structural integrity and dynamics of the protein that are linked to an enzyme's catalytic proficiency, while indicating that extensive glycosylation protects the enzyme during pathogenesis by protecting it from protease degradation.


Asunto(s)
Lipooxigenasa , Glicosilación , Lipooxigenasa/metabolismo , Lipooxigenasa/química , Lipooxigenasa/genética , Especificidad por Sustrato , Conformación Proteica , Dominio Catalítico , Procesamiento Proteico-Postraduccional , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Modelos Moleculares , Polisacáridos/metabolismo , Polisacáridos/química , Cinética , Activación Enzimática
2.
Res Sq ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38645113

RESUMEN

DNA methylation at cytosine bases of eukaryotic DNA (5-methylcytosine, 5mC) is a heritable epigenetic mark that can regulate gene expression in health and disease. Enzymes that metabolize 5mC have been well-characterized, yet the discovery of endogenously produced signaling molecules that regulate DNA methyl-modifying machinery have not been described. Herein, we report that the free radical signaling molecule nitric oxide (NO) can directly inhibit the Fe(II)/2-OG-dependent DNA demethylases ten-eleven translocation (TET) and human AlkB homolog 2 (ALKBH2). Physiologic NO concentrations reversibly inhibited TET and ALKBH2 demethylase activity by binding to the mononuclear non-heme iron atom which formed a dinitrosyliron complex (DNIC) preventing cosubstrates (2-OG and O2) from binding. In cancer cells treated with exogenous NO, or cells endogenously synthesizing NO, there was a global increase in 5mC and 5-hydroxymethylcytosine (5hmC) in DNA, the substrates for TET, that could not be attributed to increased DNA methyltransferase activity. 5mC was also elevated in NO-producing cell-line-derived mouse xenograft and patient-derived xenograft tumors. Genome-wide DNA methylome analysis of cells chronically treated with NO (10 days) demonstrated enrichment of 5mC and 5hmC at gene-regulatory loci which correlated to changes in the expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a novel epigenetic role for NO.

3.
Biochemistry ; 63(9): 1170-1177, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38587906

RESUMEN

The MbnBC enzyme complex converts cysteine residues in a peptide substrate, MbnA, to oxazolone/thioamide groups during the biosynthesis of copper chelator methanobactin (Mbn). MbnBC belongs to the mixed-valent diiron oxygenase (MVDO) family, of which members use an Fe(II)Fe(III) cofactor to react with dioxygen for substrate modification. Several crystal structures of the inactive Fe(III)Fe(III) form of MbnBC alone and in complex with MbnA have been reported, but a mechanistic understanding requires determination of the oxidation states of the crystallographically observed Fe ions in the catalytically active Fe(II)Fe(III) state, along with the site of MbnA binding. Here, we have used electron nuclear double resonance (ENDOR) spectroscopy to determine such structural and electronic properties of the active site, in particular, the mode of substrate binding to the MV state, information not accessible by X-ray crystallography alone. The oxidation states of the two Fe ions were determined by 15N ENDOR analysis. The presence and locations of both bridging and terminal exogenous solvent ligands were determined using 1H and 2H ENDOR. In addition, 2H ENDOR using an isotopically labeled MbnA substrate indicates that MbnA binds to the Fe(III) ion of the cluster via the sulfur atom of its N-terminal modifiable cysteine residue, with displacement of a coordinated solvent ligand as shown by complementary 1H ENDOR. These results, which underscore the utility of ENDOR in studying MVDOs, provide a molecular picture of the initial steps in Mbn biosynthesis.


Asunto(s)
Imidazoles , Oligopéptidos , Imidazoles/metabolismo , Imidazoles/química , Oligopéptidos/metabolismo , Oligopéptidos/química , Oligopéptidos/biosíntesis , Oxidación-Reducción , Cristalografía por Rayos X , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Espectroscopía de Resonancia por Spin del Electrón , Oxigenasas/metabolismo , Oxigenasas/química , Dominio Catalítico , Especificidad por Sustrato , Modelos Moleculares , Hierro/metabolismo , Hierro/química
4.
PLoS Genet ; 20(4): e1011248, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38662777

RESUMEN

The health risks that arise from environmental exposures vary widely within and across human populations, and these differences are largely determined by genetic variation and gene-by-environment (gene-environment) interactions. However, risk assessment in laboratory mice typically involves isogenic strains and therefore, does not account for these known genetic effects. In this context, genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening because they provide a way to introduce genetic variation in risk assessment without increasing animal use. Cell lines from genetic reference populations of laboratory mice offer genetic diversity, power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.


Asunto(s)
Arsénico , Estrés Oxidativo , Sitios de Carácter Cuantitativo , Animales , Ratones , Arsénico/toxicidad , Estrés Oxidativo/genética , Estrés Oxidativo/efectos de los fármacos , Humanos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Línea Celular , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Interacción Gen-Ambiente , Intoxicación por Arsénico/genética , Mapeo Cromosómico
5.
J Am Chem Soc ; 146(6): 3710-3720, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38308759

RESUMEN

1/2H and 13C hyperfine coupling constants to 5'-deoxyadenosyl (5'-dAdo•) radical trapped within the active site of the radical S-adenosyl-l-methionine (SAM) enzyme, pyruvate formate lyase-activating enzyme (PFL-AE), both in the absence of substrate and the presence of a reactive peptide-model of the PFL substrate, are completely characteristic of a classical organic free radical whose unpaired electron is localized in the 2pπ orbital of the sp2 C5'-carbon (J. Am. Chem. Soc. 2019, 141, 12139-12146). However, prior electron-nuclear double resonance (ENDOR) measurements had indicated that this 5'-dAdo• free radical is never truly "free": tight van der Waals contact with its target partners and active-site residues guide it in carrying out the exquisitely precise, regioselective reactions that are hallmarks of RS enzymes. Here, our understanding of how the active site chaperones 5'-dAdo• is extended through the finding that this apparently unexceptional organic free radical has an anomalous g-tensor and exhibits significant 57Fe, 13C, 15N, and 2H hyperfine couplings to the adjacent, isotopically labeled, methionine-bound [4Fe-4S]2+ cluster cogenerated with 5'-dAdo• during homolytic cleavage of cluster-bound SAM. The origin of the 57Fe couplings through nonbonded radical-cluster contact is illuminated by a formal exchange-coupling model and broken symmetry-density functional theory computations. Incorporation of ENDOR-derived distances from C5'(dAdo•) to labeled-methionine as structural constraints yields a model for active-site positioning of 5'-dAdo• with a short, nonbonded C5'-Fe distance (∼3 Å). This distance involves substantial motion of 5'-dAdo• toward the unique Fe of the [4Fe-4S]2+ cluster upon S-C(5') bond-cleavage, plausibly an initial step toward formation of the Fe-C5' bond of the organometallic complex, Ω, the central intermediate in catalysis by radical-SAM enzymes.


Asunto(s)
Proteínas Hierro-Azufre , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Metionina , Espectroscopía de Resonancia por Spin del Electrón/métodos , Dominio Catalítico , Racemetionina , Radicales Libres/química , Proteínas Hierro-Azufre/química
6.
J Am Chem Soc ; 146(6): 3926-3942, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38291562

RESUMEN

(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate reductase, or IspH (formerly known as LytB), catalyzes the terminal step of the bacterial methylerythritol phosphate (MEP) pathway for isoprene synthesis. This step converts (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP) into one of two possible isomeric products, either isopentenyl diphosphate (IPP) or dimethylallyl diphosphate (DMAPP). This reaction involves the removal of the C4 hydroxyl group of HMBPP and addition of two electrons. IspH contains a [4Fe-4S] cluster in its active site, and multiple cluster-based paramagnetic species of uncertain redox and ligation states can be detected after incubation with reductant, addition of a ligand, or during catalysis. To characterize the clusters in these species, 57Fe-labeled samples of IspH were prepared and studied by electron paramagnetic resonance (EPR), 57Fe electron-nuclear double resonance (ENDOR), and Mössbauer spectroscopies. Notably, this ENDOR study provides a rarely reported, complete determination of the 57Fe hyperfine tensors for all four Fe ions in a [4Fe-4S] cluster. The resting state of the enzyme (Ox) has a diamagnetic [4Fe-4S]2+ cluster. Reduction generates [4Fe-4S]+ (Red) with both S = 1/2 and S = 3/2 spin ground states. When the reduced enzyme is incubated with substrate, a transient paramagnetic reaction intermediate is detected (Int) which is thought to contain a cluster-bound substrate-derived species. The EPR properties of Int are indicative of a 3+ iron-sulfur cluster oxidation state, and the Mössbauer spectra presented here confirm this. Incubation of reduced enzyme with the product IPP induced yet another paramagnetic [4Fe-4S]+ species (Red+P) with S = 1/2. However, the g-tensor of this state is commonly associated with a 3+ oxidation state, while Mössbauer parameters show features typical for 2+ clusters. Implications of these complicated results are discussed.


Asunto(s)
Hemiterpenos , Proteínas Hierro-Azufre , Compuestos Organofosforados , Dominio Catalítico , Ligandos , Oxidación-Reducción , Espectroscopía de Resonancia por Spin del Electrón , Catálisis , Proteínas Hierro-Azufre/química
7.
Proc Natl Acad Sci U S A ; 120(47): e2314696120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37956301

RESUMEN

Enzymes of the radical S-adenosyl-l-methionine (radical SAM, RS) superfamily, the largest in nature, catalyze remarkably diverse reactions initiated by H-atom abstraction. Glycyl radical enzyme activating enzymes (GRE-AEs) are a growing class of RS enzymes that generate the catalytically essential glycyl radical of GREs, which in turn catalyze essential reactions in anaerobic metabolism. Here, we probe the reaction of the GRE-AE pyruvate formate-lyase activating enzyme (PFL-AE) with the peptide substrate RVSG734YAV, which mimics the site of glycyl radical formation on the native substrate, pyruvate formate-lyase. Time-resolved freeze-quench electron paramagnetic resonance spectroscopy shows that at short mixing times reduced PFL-AE + SAM reacts with RVSG734YAV to form the central organometallic intermediate, Ω, in which the adenosyl 5'C is covalently bound to the unique iron of the [4Fe-4S] cluster. Freeze-trapping the reaction at longer times reveals the formation of the peptide G734• glycyl radical product. Of central importance, freeze-quenching at intermediate times reveals that the conversion of Ω to peptide glycyl radical is not concerted. Instead, homolysis of the Ω Fe-C5' bond generates the nominally "free" 5'-dAdo• radical, which is captured here by freeze-trapping. During cryoannealing at 77 K, the 5'-dAdo• directly abstracts an H-atom from the peptide to generate the G734• peptide radical trapped in the PFL-AE active site. These observations reveal the 5'-dAdo• radical to be a well-defined intermediate, caught in the act of substrate H-atom abstraction, providing new insights into the mechanistic steps of radical initiation by RS enzymes.


Asunto(s)
Proteínas Hierro-Azufre , S-Adenosilmetionina , S-Adenosilmetionina/química , Acetiltransferasas/metabolismo , Metionina , Espectroscopía de Resonancia por Spin del Electrón , Péptidos/metabolismo , Proteínas Hierro-Azufre/metabolismo
8.
bioRxiv ; 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38014303

RESUMEN

Genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening as they offer power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.

9.
Redox Biol ; 67: 102928, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37866163

RESUMEN

N6-methyladenosine (m6A) is the most abundant internal modification on eukaryotic mRNAs. Demethylation of m6A on mRNA is catalyzed by the enzyme fat mass and obesity-associated protein (FTO), a member of the nonheme Fe(II) and 2-oxoglutarate (2-OG)-dependent family of dioxygenases. FTO activity and m6A-mRNA are dysregulated in multiple diseases including cancers, yet endogenous signaling molecules that modulate FTO activity have not been identified. Here we show that nitric oxide (NO) is a potent inhibitor of FTO demethylase activity by directly binding to the catalytic iron center, which causes global m6A hypermethylation of mRNA in cells and results in gene-specific enrichment of m6A on mRNA of NO-regulated transcripts. Both cell culture and tumor xenograft models demonstrated that endogenous NO synthesis can regulate m6A-mRNA levels and transcriptional changes of m6A-associated genes. These results build a direct link between NO and m6A-mRNA regulation and reveal a novel signaling mechanism of NO as an endogenous regulator of the epitranscriptome.


Asunto(s)
Adenosina , Óxido Nítrico , Humanos , Metilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/química , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
10.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481696

RESUMEN

AIMS: Due to antibiotic tolerance of microbes within biofilm, non-antibiotic methods for prevention and treatment of implant-related infections are preferable. The goal of this work is to evaluate a facile loading strategy for medium-chain fatty-acid signaling molecules 2-heptycyclopropane-1-carboxylic acid (2CP), cis-2-decenoic acid (C2DA), and trans-2-decenoic acid, which all act as diffusible signaling factors (DSFs), onto titanium surfaces for comparison of their antimicrobial efficacy. METHODS AND RESULTS: Titanium coupons were drop-coated with 0.75 mg of DSF in ethanol and dried. Surface characteristics and the presence of DSF were confirmed with Fourier Transform infrared spectroscopy, x-ray photoelectron spectroscopy, and water contact angle. Antimicrobial assays analyzing biofilm and planktonic Staphylococcus aureus, Escherichia coli, or Candida albicans viability showed that planktonic growth was reduced after 24-h incubation but only sustained through 72 h for S. aureus and C. albicans. Biofilm formation on the titanium coupons was also reduced for all strains at the 24-h time point, but not through 72 h for E. coli. Although ∼60% of the loaded DSF was released within the first 2 days, enough remained on the surface after 4 days of elution to significantly inhibit E. coli and C. albicans biofilm. Cytocompatibility evaluations with a fibroblast cell line showed that none of the DSF-loaded groups decreased viability, while C2DA and 2CP increased viability by up to 50%. CONCLUSIONS: In this study, we found that DSF-loaded titanium coupons can inhibit planktonic microbes and prevent biofilm attachment, without toxicity to mammalian cells.


Asunto(s)
Staphylococcus aureus , Titanio , Animales , Titanio/farmacología , Titanio/química , Escherichia coli , Biopelículas , Antibacterianos/farmacología , Mamíferos
11.
J Am Chem Soc ; 145(25): 13696-13708, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37306669

RESUMEN

The Wood-Ljungdahl Pathway is a unique biological mechanism of carbon dioxide and carbon monoxide fixation proposed to operate through nickel-based organometallic intermediates. The most unusual steps in this metabolic cycle involve a complex of two distinct nickel-iron-sulfur proteins: CO dehydrogenase and acetyl-CoA synthase (CODH/ACS). Here, we describe the nickel-methyl and nickel-acetyl intermediates in ACS completing the characterization of all its proposed organometallic intermediates. A single nickel site (Nip) within the A cluster of ACS undergoes major geometric and redox changes as it transits the planar Nip, tetrahedral Nip-CO and planar Nip-Me and Nip-Ac intermediates. We propose that the Nip intermediates equilibrate among different redox states, driven by an electrochemical-chemical (EC) coupling process, and that geometric changes in the A-cluster linked to large protein conformational changes control entry of CO and the methyl group.


Asunto(s)
Proteínas Hierro-Azufre , Níquel , Acetilcoenzima A/química , Níquel/química , Dióxido de Carbono/metabolismo , Anaerobiosis , Proteínas Hierro-Azufre/química , Óxido Nítrico Sintasa/metabolismo , Aldehído Oxidorreductasas/metabolismo , Monóxido de Carbono/química
12.
J Am Chem Soc ; 145(25): 13879-13887, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37307050

RESUMEN

The radical S-adenosyl methionine (SAM) enzyme superfamily has widespread roles in hydrogen atom abstraction reactions of crucial biological importance. In these enzymes, reductive cleavage of SAM bound to a [4Fe-4S]1+ cluster generates the 5'-deoxyadenosyl radical (5'-dAdo•) which ultimately abstracts an H atom from the substrate. However, overwhelming experimental evidence has surprisingly revealed an obligatory organometallic intermediate Ω exhibiting an Fe-C5'-adenosyl bond, whose properties are the target of this theoretical investigation. We report a readily applied, two-configuration version of broken symmetry DFT, denoted 2C-DFT, designed to allow the accurate description of the hyperfine coupling constants and g-tensors of an alkyl group bound to a multimetallic iron-sulfur cluster. This approach has been validated by the excellent agreement of its results both with those of multiconfigurational complete active space self-consistent field computations for a series of model complexes and with the results from electron nuclear double-resonance/electron paramagnetic resonance spectroscopic studies for the crystallographically characterized complex, M-CH3, a [4Fe-4S] cluster with a Fe-CH3 bond. The likewise excellent agreement between spectroscopic results and 2C-DFT computations for Ω confirm its identity as an organometallic complex with a bond between an Fe of the [4Fe-4S] cluster and C5' of the deoxyadenosyl moiety, as first proposed.

14.
Annu Rev Biochem ; 92: 333-349, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37018846

RESUMEN

Radical S-adenosylmethionine (SAM) enzymes use a site-differentiated [4Fe-4S] cluster and SAM to initiate radical reactions through liberation of the 5'-deoxyadenosyl (5'-dAdo•) radical. They form the largest enzyme superfamily, with more than 700,000 unique sequences currently, and their numbers continue to grow as a result of ongoing bioinformatics efforts. The range of extremely diverse, highly regio- and stereo-specific reactions known to be catalyzed by radical SAM superfamily members is remarkable. The common mechanism of radical initiation in the radical SAM superfamily is the focus of this review. Most surprising is the presence of an organometallic intermediate, Ω, exhibiting an Fe-C5'-adenosyl bond. Regioselective reductive cleavage of the SAM S-C5' bond produces 5'-dAdo• to form Ω, with the regioselectivity originating in the Jahn-Teller effect. Ω liberates the free 5'-dAdo• as the catalytically active intermediate through homolysis of the Fe-C5' bond, in analogy to Co-C5' bond homolysis in B12, which was once viewed as biology's choice of radical generator.


Asunto(s)
Proteínas Hierro-Azufre , S-Adenosilmetionina , S-Adenosilmetionina/química , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/química
15.
Faraday Discuss ; 243(0): 231-252, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37021412

RESUMEN

Study of α-V70I-substituted nitrogenase MoFe protein identified Fe6 of FeMo-cofactor (Fe7S9MoC-homocitrate) as a critical N2 binding/reduction site. Freeze-trapping this enzyme during Ar turnover captured the key catalytic intermediate in high occupancy, denoted E4(4H), which has accumulated 4[e-/H+] as two bridging hydrides, Fe2-H-Fe6 and Fe3-H-Fe7, and protons bound to two sulfurs. E4(4H) is poised to bind/reduce N2 as driven by mechanistically-coupled H2 reductive-elimination of the hydrides. This process must compete with ongoing hydride protonation (HP), which releases H2 as the enzyme relaxes to state E2(2H), containing 2[e-/H+] as a hydride and sulfur-bound proton; accumulation of E4(4H) in α-V70I is enhanced by HP suppression. EPR and 95Mo ENDOR spectroscopies now show that resting-state α-V70I enzyme exists in two conformational states, both in solution and as crystallized, one with wild type (WT)-like FeMo-co and one with perturbed FeMo-co. These reflect two conformations of the Ile residue, as visualized in a reanalysis of the X-ray diffraction data of α-V70I and confirmed by computations. EPR measurements show delivery of 2[e-/H+] to the E0 state of the WT MoFe protein and to both α-V70I conformations generating E2(2H) that contains the Fe3-H-Fe7 bridging hydride; accumulation of another 2[e-/H+] generates E4(4H) with Fe2-H-Fe6 as the second hydride. E4(4H) in WT enzyme and a minority α-V70I E4(4H) conformation as visualized by QM/MM computations relax to resting-state through two HP steps that reverse the formation process: HP of Fe2-H-Fe6 followed by slower HP of Fe3-H-Fe7, which leads to transient accumulation of E2(2H) containing Fe3-H-Fe7. In the dominant α-V70I E4(4H) conformation, HP of Fe2-H-Fe6 is passively suppressed by the positioning of the Ile sidechain; slow HP of Fe3-H-Fe7 occurs first and the resulting E2(2H) contains Fe2-H-Fe6. It is this HP suppression in E4(4H) that enables α-V70I MoFe to accumulate E4(4H) in high occupancy. In addition, HP suppression in α-V70I E4(4H) kinetically unmasks hydride reductive-elimination without N2-binding, a process that is precluded in WT enzyme.


Asunto(s)
Molibdoferredoxina , Nitrogenasa , Nitrogenasa/química , Nitrogenasa/metabolismo , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Sustitución de Aminoácidos , Oxidación-Reducción , Conformación Molecular , Aminoácidos , Protones
16.
Biochemistry ; 62(10): 1531-1543, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37115010

RESUMEN

Lipoxygenase (LOX) enzymes produce important cell-signaling mediators, yet attempts to capture and characterize LOX-substrate complexes by X-ray co-crystallography are commonly unsuccessful, requiring development of alternative structural methods. We previously reported the structure of the complex of soybean lipoxygenase, SLO, with substrate linoleic acid (LA), as visualized through the integration of 13C/1H electron nuclear double resonance (ENDOR) spectroscopy and molecular dynamics (MD) computations. However, this required substitution of the catalytic mononuclear, nonheme iron by the structurally faithful, yet inactive Mn2+ ion as a spin probe. Unlike canonical Fe-LOXs from plants and animals, LOXs from pathogenic fungi contain active mononuclear Mn2+ metallocenters. Here, we report the ground-state active-site structure of the native, fully glycosylated fungal LOX from rice blast pathogen Magnaporthe oryzae, MoLOX complexed with LA, as obtained through the 13C/1H ENDOR-guided MD approach. The catalytically important distance between the hydrogen donor, carbon-11 (C11), and the acceptor, Mn-bound oxygen, (donor-acceptor distance, DAD) for the MoLOX-LA complex derived in this fashion is 3.4 ± 0.1 Å. The difference of the MoLOX-LA DAD from that of the SLO-LA complex, 3.1 ± 0.1 Å, is functionally important, although is only 0.3 Å, despite the MoLOX complex having a Mn-C11 distance of 5.4 Å and a "carboxylate-out" substrate-binding orientation, whereas the SLO complex has a 4.9 Å Mn-C11 distance and a "carboxylate-in" substrate orientation. The results provide structural insights into reactivity differences across the LOX family, give a foundation for guiding development of MoLOX inhibitors, and highlight the robustness of the ENDOR-guided MD approach to describe LOX-substrate structures.


Asunto(s)
Lipooxigenasa , Simulación de Dinámica Molecular , Animales , Lipooxigenasa/química , Espectroscopía de Resonancia por Spin del Electrón , Hidrógeno/química , Ácido Linoleico/química
17.
J Am Chem Soc ; 145(10): 5637-5644, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36857604

RESUMEN

A central feature of the current understanding of dinitrogen (N2) reduction by the enzyme nitrogenase is the proposed coupling of the hydrolysis of two ATP, forming two ADP and two Pi, to the transfer of one electron from the Fe protein component to the MoFe protein component, where substrates are reduced. A redox-active [4Fe-4S] cluster associated with the Fe protein is the agent of electron delivery, and it is well known to have a capacity to cycle between a one-electron-reduced [4Fe-4S]1+ state and an oxidized [4Fe-4S]2+ state. Recently, however, it has been shown that certain reducing agents can be used to further reduce the Fe protein [4Fe-4S] cluster to a super-reduced, all-ferrous [4Fe-4S]0 state that can be either diamagnetic (S = 0) or paramagnetic (S = 4). It has been proposed that the super-reduced state might fundamentally alter the existing model for nitrogenase energy utilization by the transfer of two electrons per Fe protein cycle linked to hydrolysis of only two ATP molecules. Here, we measure the number of ATP consumed for each electron transfer under steady-state catalysis while the Fe protein cluster is in the [4Fe-4S]1+ state and when it is in the [4Fe-4S]0 state. Both oxidation states of the Fe protein are found to operate by hydrolyzing two ATP for each single-electron transfer event. Thus, regardless of its initial redox state, the Fe protein transfers only one electron at a time to the MoFe protein in a process that requires the hydrolysis of two ATP.


Asunto(s)
Molibdoferredoxina , Nitrogenasa , Nitrogenasa/química , Molibdoferredoxina/química , Electrones , Hidrólisis , Adenosina Trifosfato/química , Oxidación-Reducción , Hierro/metabolismo , Catálisis , Espectroscopía de Resonancia por Spin del Electrón
18.
Nat Chem ; 15(5): 658-665, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36914792

RESUMEN

Understanding the chemical bonding in the catalytic cofactor of the Mo nitrogenase (FeMo-co) is foundational for building a mechanistic picture of biological nitrogen fixation. A persistent obstacle towards this goal has been that the 57Fe-based spectroscopic data-although rich with information-combines responses from all seven Fe sites, and it has therefore not been possible to map individual spectroscopic responses to specific sites in the three-dimensional structure. Here we have addressed this challenge by incorporating 57Fe into a single site of FeMo-co. Spectroscopic analysis of the resting state informed on the local electronic structure of the terminal Fe1 site, including its oxidation state and spin orientation, and, in turn, on the spin-coupling scheme for the entire cluster. The oxidized resting state and the first intermediate in nitrogen fixation were also characterized, and comparisons with the resting state provided molecular-level insights into the redox chemistry of FeMo-co.


Asunto(s)
Molibdoferredoxina , Nitrogenasa , Nitrogenasa/química , Molibdoferredoxina/química , Oxidación-Reducción , Espectroscopía de Resonancia por Spin del Electrón , Catálisis
19.
FEBS Lett ; 597(1): 92-101, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36251330

RESUMEN

Enzymes that use a [4Fe-4S]1+ cluster plus S-adenosyl-l-methionine (SAM) to initiate radical reactions (radical SAM) form the largest enzyme superfamily, with over half a million members across the tree of life. This review summarizes recent work revealing the radical SAM reaction pathway, which ultimately liberates the 5'-deoxyadenosyl (5'-dAdo•) radical to perform extremely diverse, highly regio- and stereo-specific, transformations. Most surprising was the discovery of an organometallic intermediate Ω exhibiting an Fe-C5'-adenosyl bond. Ω liberates 5'-dAdo• through homolysis of the Fe-C5' bond, in analogy to Co-C5' bond homolysis in B12 , previously viewed as biology's paradigmatic radical generator. The 5'-dAdo• has been trapped and characterized in radical SAM enzymes via a recently discovered photoreactivity of the [4Fe-4S]+ /SAM complex, and has been confirmed as a catalytically active intermediate in enzyme catalysis. The regioselective SAM S-C bond cleavage to produce 5'-dAdo• originates in the Jahn-Teller effect. The simplicity of SAM as a radical precursor, and the exquisite control of 5'-dAdo• reactivity in radical SAM enzymes, may be why radical SAM enzymes pervade the tree of life, while B12 enzymes are only a few.


Asunto(s)
Proteínas Hierro-Azufre , S-Adenosilmetionina , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Proteínas Hierro-Azufre/metabolismo , Enzimas/química , Enzimas/metabolismo
20.
Gen Comp Endocrinol ; 332: 114181, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455641

RESUMEN

Consecutive and skip repeat spawning (1- or ≥2-year spawning interval) life histories commonly occur in seasonally breeding iteroparous fishes. Spawning interval variation is driven by energetic status and impacts fisheries management. In salmonids, energetic status (either absolute level of energy reserves or the rate of change of energy reserves, i.e., energy balance) is thought to determine reproductive trajectory during a critical period ∼1 year prior to initial spawning. However, information on repeat spawners is lacking. To examine the timing and the aspects of energetic status that regulate repeat spawning interval, female steelhead trout (Oncorhynchus mykiss) were fasted for 10 weeks after spawning and then fed ad libitum and compared to ad libitum fed controls. Plasma growth hormone (GH) and insulin-like growth factor-I (IGF-I) levels were measured to assess long-term energy balance. Plasma estradiol levels showed that some fish in both groups initiated a consecutive spawning cycle. In fasted fish, GH was lower at spawning in consecutive versus skip spawners. In consecutive spawners, GH was higher at spawning in fed versus fasted fish. These results suggest that fish with a less negative energy balance at spawning initiated reproductive development in the absence of feeding, but that feeding during the post-spawning period enabled initiation of reproduction in some fish with a more negative energy balance at spawning. Thus, both energy balance at spawning and feeding after spawning regulated reproductive schedules. These results show that the critical period model of salmonid maturation applies to regulation of repeat spawning, and that the reproductive decision window extends into the first 10 weeks after spawning.


Asunto(s)
Oncorhynchus mykiss , Animales , Femenino , Hormona del Crecimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...