Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7921, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040714

RESUMEN

Forming a hetero-interface is a materials-design strategy that can access an astronomically large phase space. However, the immense phase space necessitates a high-throughput approach for an optimal interface design. Here we introduce a high-throughput computational framework, InterMatch, for efficiently predicting charge transfer, strain, and superlattice structure of an interface by leveraging the databases of individual bulk materials. Specifically, the algorithm reads in the lattice vectors, density of states, and the stiffness tensors for each material in their isolated form from the Materials Project. From these bulk properties, InterMatch estimates the interfacial properties. We benchmark InterMatch predictions for the charge transfer against experimental measurements and supercell density-functional theory calculations. We then use InterMatch to predict promising interface candidates for doping transition metal dichalcogenide MoSe2. Finally, we explain experimental observation of factor of 10 variation in the supercell periodicity within a few microns in graphene/α-RuCl3 by exploring low energy superlattice structures as a function of twist angle using InterMatch. We anticipate our open-source InterMatch algorithm accelerating and guiding ever-growing interfacial design efforts. Moreover, the interface database resulting from the InterMatch searches presented in this paper can be readily accessed online.

2.
Nat Commun ; 14(1): 2622, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147296

RESUMEN

Charge modulations have been widely observed in cuprates, suggesting their centrality for understanding the high-Tc superconductivity in these materials. However, the dimensionality of these modulations remains controversial, including whether their wavevector is unidirectional or bidirectional, and also whether they extend seamlessly from the surface of the material into the bulk. Material disorder presents severe challenges to understanding the charge modulations through bulk scattering techniques. We use a local technique, scanning tunneling microscopy, to image the static charge modulations on Bi2-zPbzSr2-yLayCuO6+x. The ratio of the phase correlation length ξCDW to the orientation correlation length ξorient points to unidirectional charge modulations. By computing new critical exponents at free surfaces including that of the pair connectivity correlation function, we show that these locally 1D charge modulations are actually a bulk effect resulting from classical 3D criticality of the random field Ising model throughout the entire superconducting doping range.

3.
Nat Mater ; 22(6): 703-709, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36879002

RESUMEN

The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but the superconductivity at high doping is often believed to be governed by conventional mean-field Bardeen-Cooper-Schrieffer theory1. However, it was shown that the superfluid density vanishes when the transition temperature goes to zero2,3, in contradiction to expectations from Bardeen-Cooper-Schrieffer theory. Our scanning tunnelling spectroscopy measurements in the overdoped regime of the (Pb,Bi)2Sr2CuO6+δ high-temperature superconductor show that this is due to the emergence of nanoscale superconducting puddles in a metallic matrix4,5. Our measurements further reveal that this puddling is driven by gap filling instead of gap closing. The important implication is that it is not a diminishing pairing interaction that causes the breakdown of superconductivity. Unexpectedly, the measured gap-to-filling correlation also reveals that pair breaking by disorder does not play a dominant role and that the mechanism of superconductivity in overdoped cuprate superconductors is qualitatively different from conventional mean-field theory.

4.
Science ; 379(6638): 1214-1218, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36952423

RESUMEN

A Kondo lattice is often electrically insulating at low temperatures. However, several recent experiments have detected signatures of bulk metallicity within this Kondo insulating phase. In this study, we visualized the real-space charge landscape within a Kondo lattice with atomic resolution using a scanning tunneling microscope. We discovered nanometer-scale puddles of metallic conduction electrons centered around uranium-site substitutions in the heavy-fermion compound uranium ruthenium silicide (URu2Si2) and around samarium-site defects in the topological Kondo insulator samarium hexaboride (SmB6). These defects disturbed the Kondo screening cloud, leaving behind a fingerprint of the metallic parent state. Our results suggest that the three-dimensional quantum oscillations measured in SmB6 arise from Kondo-lattice defects, although we cannot exclude other explanations. Our imaging technique could enable the development of atomic-scale charge sensors using heavy-fermion probes.

5.
Phys Rev Lett ; 128(1): 015501, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35061498

RESUMEN

Topological metamaterials have robust properties engineered from their macroscopic arrangement, rather than their microscopic constituency. They can be designed by starting from Dirac metamaterials with either symmetry-enforced or accidental degeneracy. The latter case provides greater flexibility in the design of topological switches, waveguides, and cloaking devices, because a large number of tuning parameters can be used to break the degeneracy and induce a topological phase. However, the design of a topological logic element-a switch that can be controlled by the output of a separate switch-remains elusive. Here we numerically demonstrate a topological logic gate for ultrasound by exploiting the large phase space of accidental degeneracies in a honeycomb lattice. We find that a degeneracy can be broken by six physical parameters, and we show how to tune these parameters to create a phononic switch that transitions between a topological waveguide and a trivial insulator by ultrasonic heating. Our design scheme is directly applicable to photonic crystals and may guide the design of future electronic topological transistors.

6.
Rev Sci Instrum ; 92(1): 013703, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33514250

RESUMEN

Many modern nanofabrication and imaging techniques require an ultra-quiet environment to reach optimal resolution. Isolation from ambient vibrations is often achieved by placing the sensitive instrument atop a massive block that floats on air springs and is surrounded by acoustic barriers. Because typical building noise drops off above 120 Hz, it is advantageous to raise the flexural resonance frequencies of the inertia block and instrument far above 120 Hz. However, it can be challenging to obtain a high fundamental frequency of the floating block using a simple rectangular design. Here, we design, construct, and characterize a vibration isolation system with a cylindrical inertia block, whose lowest resonance frequency of 249 Hz shows good agreement between finite element analysis simulation and directly measured modes. Our simulations show that a cylindrical design can achieve a higher fundamental resonance frequency than a rectangular design of the same mass.

7.
Sci Rep ; 7(1): 8059, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28808301

RESUMEN

The pseudogap (PG) state and its related intra-unit-cell symmetry breaking remain the focus in the research of cuprate superconductors. Although the nematicity has been studied in Bi2Sr2CaCu2O8+δ, especially underdoped samples, its behavior in other cuprates and different doping regions is still unclear. Here we apply a scanning tunneling microscope to explore an overdoped (Bi, Pb)2Sr2CuO6+δ with a large Fermi surface (FS). The establishment of a nematic order and its real-space distribution is visualized as the energy scale approaches the PG.

8.
Rev Sci Instrum ; 88(2): 023705, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28249529

RESUMEN

We report a detailed three-step roadmap for the fabrication and characterization of bulk Cr tips for spin-polarized scanning tunneling microscopy. Our strategy uniquely circumvents the need for ultra-high vacuum preparation of clean surfaces or films. First, we demonstrate the role of ex situ electrochemical etch parameters on Cr tip apex geometry, using scanning electron micrographs of over 70 etched tips. Second, we describe the suitability of the in situ cleaved surface of the layered antiferromagnet La1.4Sr1.6Mn2O7 to evaluate the spin characteristics of the Cr tip, replacing the ultra-high vacuum-prepared test samples that have been used in prior studies. Third, we outline a statistical algorithm that can effectively delineate closely spaced or irregular cleaved step edges, to maximize the accuracy of step height and spin-polarization measurements.

9.
Nano Lett ; 17(3): 1582-1586, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28166407

RESUMEN

Helium ion beams (HIB) focused to subnanometer scales have emerged as powerful tools for high-resolution imaging as well as nanoscale lithography, ion milling, or deposition. Quantifying irradiation effects is an essential step toward reliable device fabrication, but most of the depth profiling information is provided by computer simulations rather than the experiment. Here, we demonstrate the use of atomic force microscopy (AFM) combined with scanning near-field optical microscopy (SNOM) to provide three-dimensional (3D) dielectric characterization of high-temperature superconductor devices fabricated by HIB. By imaging the infrared dielectric response obtained from light demodulation at multiple harmonics of the AFM tapping frequency, we find that amorphization caused by the nominally 0.5 nm HIB extends throughout the entire 26.5 nm thickness of the cuprate film and by ∼500 nm laterally. This unexpectedly widespread damage in morphology and electronic structure can be attributed to a helium depth distribution substantially modified by the internal device interfaces. Our study introduces AFM-SNOM as a quantitative tomographic technique for noninvasive 3D characterization of irradiation damage in a wide variety of nanoscale devices.

10.
Nano Lett ; 16(7): 4224-9, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27282020

RESUMEN

The properties of iron-based superconductors (Fe-SCs) can be varied dramatically with the introduction of dopants and atomic defects. As a pressing example, FeSe, parent phase of the highest-Tc Fe-SC, exhibits prevalent defects with atomic-scale "dumbbell" signatures as imaged by scanning tunneling microscopy (STM). These defects spoil superconductivity when their concentration exceeds 2.5%. Resolving their chemical identity is a prerequisite to applications such as nanoscale patterning of superconducting/nonsuperconducting regions in FeSe as well as fundamental questions such as the mechanism of superconductivity and the path by which the defects destroy it. We use STM and density functional theory to characterize and identify the dumbbell defects. In contrast to previous speculations about Se adsorbates or substitutions, we find that an Fe-site vacancy is the most energetically favorable defect in Se-rich conditions and reproduces our observed STM signature. Our calculations shed light more generally on the nature of Se capping, the removal of Fe vacancies via annealing, and their ordering into a √5 × âˆš5 superstructure in FeSe and related alkali-doped compounds.

11.
Phys Rev Lett ; 115(1): 017002, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26182116

RESUMEN

We use scanning tunneling spectroscopy to investigate the filled and empty electronic states of superconducting single-unit-cell FeSe deposited on SrTiO3(001). We map the momentum-space band structure by combining quasiparticle interference imaging with decay length spectroscopy. In addition to quantifying the filled-state bands, we discover a Γ-centered electron pocket 75 meV above the Fermi energy. Our density functional theory calculations show the orbital nature of empty states at Γ and explain how the Se height is a key tuning parameter of their energies, with broad implications for electronic properties.

12.
Nano Lett ; 14(12): 6749-53, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25365704

RESUMEN

The highest-temperature superconductors are electronically inhomogeneous at the nanoscale, suggesting the existence of a local variable that could be harnessed to enhance the superconducting pairing. Here we report the relationship between local doping and local strain in the cuprate superconductor Bi(2)Sr(2)CaCu(2)O(8+x). We use scanning tunneling microscopy to discover that the crucial oxygen dopants are periodically distributed in correlation with local strain. Our picoscale investigation of the intraunit-cell positions of all oxygen dopants provides essential structural input for a complete microscopic theory.


Asunto(s)
Cobre/química , Conductividad Eléctrica , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Modelos Químicos , Simulación por Computador , Módulo de Elasticidad , Calor , Ensayo de Materiales , Resistencia a la Tracción
13.
Nature ; 513(7518): 319-20, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25230648
14.
Phys Rev Lett ; 112(5): 057002, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24580624

RESUMEN

Scanning tunneling spectroscopy has been used to reveal signatures of a bosonic mode in the local quasiparticle density of states of superconducting FeSe films. The mode appears below Tc as a "dip-hump" feature at energy Ω∼4.7kBTc beyond the superconducting gap Δ. Spectra on strained regions of the FeSe films reveal simultaneous decreases in Δ and Ω. This contrasts with all previous reports on other high-Tc superconductors, where Δ locally anticorrelates with Ω. A local strong coupling model is found to reconcile the discrepancy well, and to provide a unified picture of the electron-boson coupling in unconventional superconductors.

15.
Science ; 343(6169): 390-2, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24356115

RESUMEN

The understanding of the origin of superconductivity in cuprates has been hindered by the apparent diversity of intertwining electronic orders in these materials. We combined resonant x-ray scattering (REXS), scanning-tunneling microscopy (STM), and angle-resolved photoemission spectroscopy (ARPES) to observe a charge order that appears consistently in surface and bulk, and in momentum and real space within one cuprate family, Bi2Sr(2-x)La(x)CuO(6+δ). The observed wave vectors rule out simple antinodal nesting in the single-particle limit but match well with a phenomenological model of a many-body instability of the Fermi arcs. Combined with earlier observations of electronic order in other cuprate families, these findings suggest the existence of a generic charge-ordered state in underdoped cuprates and uncover its intimate connection to the pseudogap regime.

16.
Phys Chem Chem Phys ; 15(32): 13462-78, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23828027

RESUMEN

Many of today's forefront materials, such as high-Tc superconductors, doped semiconductors, and colossal magnetoresistance materials, are structurally, chemically and/or electronically inhomogeneous at the nanoscale. Although inhomogeneity can degrade the utility of some materials, defects can also be advantageous. Quite generally, defects can serve as nanoscale probes and facilitate quasiparticle scattering used to extract otherwise inaccessible electronic properties. In superconductors, non-stoichiometric dopants are typically necessary to achieve a high transition temperature, while both structural and chemical defects are used to pin vortices and increase critical current. Scanning tunneling microscopy (STM) has proven to be an ideal technique for studying these processes at the atomic scale. In this perspective, we present an overview of STM studies on chemical disorder in unconventional superconductors, and discuss how dopants, impurities and adatoms may be used to probe, pin or enhance the intrinsic electronic properties of these materials.

17.
Proc Natl Acad Sci U S A ; 110(5): 1623-7, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23319646

RESUMEN

The competition between proximate electronic phases produces a complex phenomenology in strongly correlated systems. In particular, fluctuations associated with periodic charge or spin modulations, known as density waves, may lead to exotic superconductivity in several correlated materials. However, density waves have been difficult to isolate in the presence of chemical disorder, and the suspected causal link between competing density wave orders and high-temperature superconductivity is not understood. Here we used scanning tunneling microscopy to image a previously unknown unidirectional (stripe) charge-density wave (CDW) smoothly interfacing with the familiar tridirectional (triangular) CDW on the surface of the stoichiometric superconductor NbSe(2). Our low-temperature measurements rule out thermal fluctuations and point to local strain as the tuning parameter for this quantum phase transition. We use this quantum interface to resolve two longstanding debates about the anomalous spectroscopic gap and the role of Fermi surface nesting in the CDW phase of NbSe(2). Our results highlight the importance of local strain in governing phase transitions and competing phenomena, and suggest a promising direction of inquiry for resolving similarly longstanding debates in cuprate superconductors and other strongly correlated materials.


Asunto(s)
Niobio/química , Transición de Fase , Teoría Cuántica , Compuestos de Selenio/química , Algoritmos , Cristalización , Conductividad Eléctrica , Microscopía de Túnel de Rastreo/métodos , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Temperatura de Transición
18.
Phys Rev Lett ; 109(13): 137004, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23030114

RESUMEN

Low-temperature scanning tunneling microscopy and spectroscopy are employed to investigate twin boundaries in stoichiometric FeSe films grown by molecular beam epitaxy. Twin boundaries can be unambiguously identified by imaging the 90° change in the orientation of local electronic dimers from Fe site impurities on either side. Twin boundaries run at approximately 45° to the Fe-Fe bond directions, and noticeably suppress the superconducting gap, in contrast with the recent experimental and theoretical findings in other iron pnictides. Furthermore, vortices appear to accumulate on twin boundaries, consistent with the degraded superconductivity there. The variation in superconductivity is likely caused by the increased Se height in the vicinity of twin boundaries, providing the first local evidence for the importance of this height to the mechanism of superconductivity.

19.
Science ; 337(6092): 320-3, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22822144

RESUMEN

High-temperature cuprate superconductors display unexpected nanoscale inhomogeneity in essential properties such as pseudogap energy, Fermi surface, and even superconducting critical temperature. Theoretical explanations for this inhomogeneity have ranged from chemical disorder to spontaneous electronic phase separation. We extend the energy range of scanning tunneling spectroscopy on Bi(2+y)Sr(2-y)CaCu(2)O(8+x), allowing a complete mapping of two types of interstitial oxygen dopants and vacancies at the apical oxygen site. We show that the nanoscale spatial variations in the pseudogap states are correlated with disorder in these dopant concentrations, particularly that of apical oxygen vacancies.

20.
Nat Mater ; 11(7): 585-9, 2012 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-22561901

RESUMEN

A complicating factor in unravelling the theory of high-temperature (high-T(c)) superconductivity is the presence of a 'pseudogap' in the density of states, the origin of which has been debated since its discovery. Some believe the pseudogap is a broken symmetry state distinct from superconductivity, whereas others believe it arises from short-range correlations without symmetry breaking. A number of broken symmetries have been imaged and identified with the pseudogap state, but it remains crucial to disentangle any electronic symmetry breaking from the pre-existing structural symmetry of the crystal. We use scanning tunnelling microscopy to observe an orthorhombic structural distortion across the cuprate superconducting Bi(2)Sr(2)Ca(n-1)Cu(n)O(2n+4+x) (BSCCO) family tree, which breaks two-dimensional inversion symmetry in the surface BiO layer. Although this inversion-symmetry-breaking structure can impact electronic measurements, we show from its insensitivity to temperature, magnetic field and doping, that it cannot be the long-sought pseudogap state. To detect this picometre-scale variation in lattice structure, we have implemented a new algorithm that will serve as a powerful tool in the search for broken symmetry electronic states in cuprates, as well as in other materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA