Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 4(9)2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31045581

RESUMEN

Conjugated bile acids (CBAs), such as tauroursodeoxycholic acid (TUDCA), are known to resolve the inflammatory and unfolded protein response (UPR) in inflammatory diseases, such as asthma. Whether CBAs exert their beneficial effects on allergic airway responses via 1 arm or several arms of the UPR, or alternatively through the signaling pathways for conserved bile acid receptor, remains largely unknown. We used a house dust mite-induced (HDM-induced) murine model of asthma to evaluate and compare the effects of 5 CBAs and 1 unconjugated bile acid in attenuating allergen-induced UPR and airway responses. Expression of UPR-associated transcripts was assessed in airway brushings from human patients with asthma and healthy subjects. Here we show that CBAs, such as alanyl ß-muricholic acid (AßM) and TUDCA, significantly decreased inflammatory, immune, and cytokine responses; mucus metaplasia; and airway hyperresponsiveness, as compared with other CBAs in a model of allergic airway disease. CBAs predominantly bind to activating transcription factor 6α (ATF6α) compared with the other canonical transducers of the UPR, subsequently decreasing allergen-induced UPR activation and resolving allergic airway disease, without significant activation of the bile acid receptors. TUDCA and AßM also attenuated other HDM-induced ER stress markers in the lungs of allergic mice. Quantitative mRNA analysis of airway epithelial brushings from human subjects demonstrated that several ATF6α-related transcripts were significantly upregulated in patients with asthma compared with healthy subjects. Collectively, these results demonstrate that CBA-based therapy potently inhibits the allergen-induced UPR and allergic airway disease in mice via preferential binding of the canonical transducer of the UPR, ATF6α. These results potentially suggest a novel avenue to treat allergic asthma using select CBAs.


Asunto(s)
Alérgenos/inmunología , Asma/inmunología , Inflamación/inmunología , Hipersensibilidad Respiratoria/inmunología , Respuesta de Proteína Desplegada/inmunología , Animales , Ácidos y Sales Biliares/efectos adversos , Quimiocinas , Citocinas/metabolismo , Femenino , Humanos , Hipersensibilidad , Pulmón/inmunología , Pulmón/metabolismo , Metaplasia/inmunología , Metaplasia/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Deficiencias en la Proteostasis , Pyroglyphidae/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Hipersensibilidad Respiratoria/tratamiento farmacológico , Ácido Tauroquenodesoxicólico/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
2.
Redox Biol ; 22: 101129, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30735910

RESUMEN

Protein disulfide isomerases (PDI) are a family of redox chaperones that catalyze formation or isomerization of disulfide bonds in proteins. Previous studies have shown that one member, PDIA3, interacts with influenza A virus (IAV) hemagglutinin (HA), and this interaction is required for efficient oxidative folding of HA in vitro. However, it is unknown whether these host-viral protein interactions occur during active infection and whether such interactions represent a putative target for the treatment of influenza infection. Here we show that PDIA3 is specifically upregulated in IAV-infected mouse or human lung epithelial cells and PDIA3 directly interacts with IAV-HA. Treatment with a PDI inhibitor, LOC14 inhibited PDIA3 activity in lung epithelial cells, decreased intramolecular disulfide bonds and subsequent oligomerization (maturation) of HA in both H1N1 (A/PR8/34) and H3N2 (X31, A/Aichi/68) infected lung epithelial cells. These reduced disulfide bond formation significantly decreased viral burden, and also pro-inflammatory responses from lung epithelial cells. Lung epithelial-specific deletion of PDIA3 in mice resulted in a significant decrease in viral burden and lung inflammatory-immune markers upon IAV infection, as well as significantly improved airway mechanics. Taken together, these results indicate that PDIA3 is required for effective influenza pathogenesis in vivo, and pharmacological inhibition of PDIs represents a promising new anti-influenza therapeutic strategy during pandemic and severe influenza seasons.


Asunto(s)
Infecciones por Orthomyxoviridae/etiología , Infecciones por Orthomyxoviridae/metabolismo , Proteína Disulfuro Isomerasas/genética , Mucosa Respiratoria/enzimología , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Eliminación de Gen , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/fisiología , Ratones , Ratones Transgénicos , Infecciones por Orthomyxoviridae/diagnóstico , Proteína Disulfuro Isomerasas/metabolismo , Pruebas de Función Respiratoria , Hipersensibilidad Respiratoria/etiología , Hipersensibilidad Respiratoria/metabolismo , Hipersensibilidad Respiratoria/fisiopatología , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Carga Viral
3.
Nat Med ; 24(8): 1128-1135, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988126

RESUMEN

Idiopathic pulmonary fibrosis is characterized by excessive deposition of collagen in the lung, leading to chronically impaired gas exchange and death1-3. Oxidative stress is believed to be critical in this disease pathogenesis4-6, although the exact mechanisms remain enigmatic. Protein S-glutathionylation (PSSG) is a post-translational modification of proteins that can be reversed by glutaredoxin-1 (GLRX)7. It remains unknown whether GLRX and PSSG play a role in lung fibrosis. Here, we explored the impact of GLRX and PSSG status on the pathogenesis of pulmonary fibrosis, using lung tissues from subjects with idiopathic pulmonary fibrosis, transgenic mouse models and direct administration of recombinant Glrx to airways of mice with existing fibrosis. We demonstrate that GLRX enzymatic activity was strongly decreased in fibrotic lungs, in accordance with increases in PSSG. Mice lacking Glrx were far more susceptible to bleomycin- or adenovirus encoding active transforming growth factor beta-1 (AdTGFB1)-induced pulmonary fibrosis, whereas transgenic overexpression of Glrx in the lung epithelium attenuated fibrosis. We furthermore show that endogenous GLRX was inactivated through an oxidative mechanism and that direct administration of the Glrx protein into airways augmented Glrx activity and reversed increases in collagen in mice with TGFB1- or bleomycin-induced fibrosis, even when administered to fibrotic, aged animals. Collectively, these findings suggest the therapeutic potential of exogenous GLRX in treating lung fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Proteínas/metabolismo , Animales , Femenino , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxidación-Reducción
4.
Clin Transl Med ; 5(1): 36, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27590145

RESUMEN

BACKGROUND: Lung remodeling and pulmonary fibrosis are serious, life-threatening conditions resulting from diseases such as chronic severe asthma and idiopathic pulmonary fibrosis (IPF). Preclinical evidence suggests that JNK enzyme function is required for key steps in the pulmonary fibrotic process. However, a selective JNK inhibitor has not been investigated in translational models of lung fibrosis with clinically relevant biomarkers, or in IPF patients. METHODS: The JNK inhibitor CC-930 was evaluated in the house dust mite-induced fibrotic airway mouse model, in a phase I healthy volunteer pharmacodynamic study, and subsequently in a phase II multicenter study of mild/moderate IPF (n = 28), with a 4-week, placebo-controlled, double-blind, sequential ascending-dose period (50 mg QD, 100 mg QD, 100 mg BID) and a 52-week open-label treatment-extension period. RESULTS: In the preclinical model, CC-930 attenuated collagen 1A1 gene expression, peribronchiolar collagen deposition, airway mucin MUC5B expression in club cells, and MMP-7 expression in lung, bronchoalveolar lavage fluid, and serum. In the phase I study, CC-930 reduced c-Jun phosphorylation induced by UV radiation in skin. In the phase II IPF study, there was a CC-930 dose-dependent trend in reduction of MMP-7 and SP-D plasma protein levels. The most commonly reported adverse events were increased ALT, increased AST, and upper respiratory tract infection (six subjects each, 21.4 %). A total of 13 subjects (46.4 %) experienced adverse events that led to discontinuation of study drug. Nine out of 28 subjects experienced progressive disease in this study. The mean FVC (% predicted) declined after 26-32 weeks at doses of 100 mg QD and 100 mg BID. Changes in MMP-7, SP-D, and tenascin-C significantly correlated with change in FVC (% predicted). CONCLUSIONS: These results illustrate JNK enzymatic activity involvement during pulmonary fibrosis, and support systemic biomarker use for tracking disease progression and the potential clinical benefit of this novel intervention in IPF. Trial registration ClinicalTrials.gov NCT01203943.

5.
Am J Physiol Lung Cell Mol Physiol ; 310(11): L1243-59, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27154200

RESUMEN

Endoplasmic reticulum (ER) stress-induced unfolded protein response plays a critical role in inflammatory diseases, including allergic airway disease. However, the benefits of inhibiting ER stress in the treatment of allergic airway disease are not well known. Herein, we tested the therapeutic potential of a chemical chaperone, tauroursodeoxycholic acid (TUDCA), in combating allergic asthma, using a mouse model of house dust mite (HDM)-induced allergic airway disease. TUDCA was administered during the HDM-challenge phase (preventive regimen), after the HDM-challenge phase (therapeutic regimen), or therapeutically during a subsequent HDM rechallenge (rechallenge regimen). In the preventive regimen, TUDCA significantly decreased HDM-induced inflammation, markers of ER stress, airway hyperresponsiveness (AHR), and fibrosis. Similarly, in the therapeutic regimen, TUDCA administration efficiently decreased HDM-induced airway inflammation, mucus metaplasia, ER stress markers, and AHR, but not airway remodeling. Interestingly, TUDCA administered therapeutically in the HDM rechallenge regimen markedly attenuated HDM-induced airway inflammation, mucus metaplasia, ER stress markers, methacholine-induced AHR, and airway fibrotic remodeling. These results indicate that the inhibition of ER stress in the lungs through the administration of chemical chaperones could be a valuable strategy in the treatment of allergic airway diseases.


Asunto(s)
Antiasmáticos/farmacología , Antiinflamatorios/farmacología , Asma/tratamiento farmacológico , Ácido Tauroquenodesoxicólico/farmacología , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Animales , Antiasmáticos/uso terapéutico , Antiinflamatorios/uso terapéutico , Asma/inmunología , Evaluación Preclínica de Medicamentos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/inmunología , Femenino , Ratones Endogámicos C57BL , Pyroglyphidae/inmunología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inmunología , Ácido Tauroquenodesoxicólico/uso terapéutico
6.
Redox Biol ; 8: 375-82, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27058114

RESUMEN

Nuclear Factor kappa B (NF-κB) is a transcription factor family critical in the activation of pro- inflammatory responses. The NF-κB pathway is regulated by oxidant-induced post-translational modifications. Protein S-glutathionylation, or the conjugation of the antioxidant molecule, glutathione to reactive cysteines inhibits the activity of inhibitory kappa B kinase beta (IKKß), among other NF-κB proteins. Glutathione S-transferase Pi (GSTP) is an enzyme that has been shown to catalyze protein S-glutathionylation (PSSG) under conditions of oxidative stress. The objective of the present study was to determine whether GSTP regulates NF-κB signaling, S-glutathionylation of IKK, and subsequent pro-inflammatory signaling. We demonstrated that, in unstimulated cells, GSTP associated with the inhibitor of NF-κB, IκBα. However, exposure to LPS resulted in a rapid loss of association between IκBα and GSTP, and instead led to a protracted association between IKKß and GSTP. LPS exposure also led to increases in the S-glutathionylation of IKKß. SiRNA-mediated knockdown of GSTP decreased IKKß-SSG, and enhanced NF-κB nuclear translocation, transcriptional activity, and pro-inflammatory cytokine production in response to lipopolysaccharide (LPS). TLK117, an isotype-selective inhibitor of GSTP, also enhanced LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production, suggesting that the catalytic activity of GSTP is important in repressing NF-κB activation. Expression of both wild-type and catalytically-inactive Y7F mutant GSTP significantly attenuated LPS- or IKKß-induced production of GM-CSF. These studies indicate a complex role for GSTP in modulating NF-κB, which may involve S-glutathionylation of IKK proteins, and interaction with NF-κB family members. Our findings suggest that targeting GSTP is a potential avenue for regulating the activity of this prominent pro-inflammatory and immunomodulatory transcription factor.


Asunto(s)
Asma/genética , Gutatión-S-Transferasa pi/genética , Quinasa I-kappa B/genética , Inflamación/genética , Pulmón/metabolismo , Animales , Asma/inducido químicamente , Asma/patología , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Glutarredoxinas/metabolismo , Gutatión-S-Transferasa pi/metabolismo , Humanos , Quinasa I-kappa B/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Pulmón/patología , Ratones , FN-kappa B/genética , Estrés Oxidativo/genética , Procesamiento Proteico-Postraduccional/genética , Transducción de Señal
7.
Am J Respir Cell Mol Biol ; 55(3): 377-86, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27035878

RESUMEN

Protein S-glutathionylation (PSSG) is an oxidant-induced post-translational modification of protein cysteines that impacts structure and function. The oxidoreductase glutaredoxin-1 (Glrx1) under physiological conditions catalyzes deglutathionylation and restores the protein thiol group. The involvement of Glrx1/PSSG in allergic inflammation induced by asthma-relevant allergens remains unknown. In the present study, we examined the impact of genetic ablation of Glrx1 in the pathogenesis of house dust mite (HDM)-induced allergic airways disease in mice. Wild-type (WT) or Glrx1(-/-) mice were instilled intranasally with HDM on 5 consecutive days for 3 weeks. As expected, overall PSSG was increased in Glrx1(-/-) HDM mice as compared with WT animals. Total cells in bronchoalveolar lavage fluid were similarly increased in HDM-treated WT and Glrx1(-/-) mice. However, in response to HDM, mice lacking Glrx1 demonstrated significantly more neutrophils and macrophages but fewer eosinophils as compared with HDM-exposed WT mice. mRNA expression of the Th2-associated cytokines IL-13 and IL-6, as well as mucin-5AC (Muc5ac), was significantly attenuated in Glrx1(-/-) HDM-treated mice. Conversely, mRNA expression of IFN-γ and IL-17A was increased in Glrx1(-/-) HDM mice compared with WT littermates. Restimulation of single-cell suspensions isolated from lungs or spleens with HDM resulted in enhanced IL-17A and decreased IL-5 production in cells derived from inflamed Glrx1(-/-) mice compared with WT animals. Finally, HDM-induced tissue damping and elastance were significantly attenuated in Glrx1(-/-) mice compared with WT littermates. These results demonstrate that the Glrx1-PSSG axis plays a pivotal role in HDM-induced allergic airways disease in association with enhanced type 2 inflammation and restriction of IFN-γ and IL-17A.


Asunto(s)
Glutarredoxinas/metabolismo , Hipersensibilidad/patología , Hipersensibilidad/parasitología , Pulmón/patología , Pulmón/parasitología , Pyroglyphidae/fisiología , Animales , Citocinas/genética , Citocinas/metabolismo , Glutatión/metabolismo , Hiperplasia , Hipersensibilidad/sangre , Hipersensibilidad/complicaciones , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Ratones Endogámicos BALB C , Moco/metabolismo , Neumonía/sangre , Neumonía/complicaciones , Neumonía/parasitología , Neumonía/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Hipersensibilidad Respiratoria/sangre , Hipersensibilidad Respiratoria/parasitología , Hipersensibilidad Respiratoria/patología , Hipersensibilidad Respiratoria/fisiopatología , Mecánica Respiratoria , Células Th2/inmunología
8.
Ann Am Thorac Soc ; 13 Suppl 1: S97, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27027965

RESUMEN

S-glutathionylation has emerged as an oxidant-induced post-translational modification of protein cysteines that affects structure and function. The oxidoreductase glutaredoxin-1 (Glrx1), under physiological conditions, catalyzes deglutathionylation and restores the protein thiol group. The involvement of Grx1/S-glutathionylation in allergic inflammation induced by asthma-relevant allergens remains unknown. In the present study we examined the impact of genetic ablation of Glrx1 for the pathogenesis of house dust mite (HDM)-induced allergic airway disease in mice. Wild-type (WT) or Glrx1(-/-) mice in the BALB/c background were instilled intranasally with 50 µg of HDM 5 consecutive days for 3 weeks and killed 72 hours post final exposure. As expected, overall protein S-glutathionylation was increased in Glrx1(-/-) mice exposed to HDM as compared with WT animals. Total cells in the bronchoalveolar lavage fluid were similarly increased in WT and Glrx1(-/-) HDM-treated mice compared with phosphate-buffered saline-treated control mice. However, in response to HDM, mice lacking Glrx1 demonstrated significantly more neutrophils but fewer eosinophils than HDM-exposed WT mice. mRNA expression of the Th2-associated cytokine IL-13, as well as MUC5ac, was significantly attenuated in Glrx1(-/-) HDM-treated mice compared with WT mice. Conversely, expression of IL-17A was increased in Glrx1(-/-) HDM mice compared with WT mice. Last, HDM-induced tissue damping and elastance were significantly attenuated in Glrx1(-/-) mice compared with WT littermates. These results demonstrate that the Grx1/S-glutathionylation redox status plays a pivotal role in HDM-induced allergic inflammation and airway hyperresponsiveness and suggest a potential role of Glrx1/S-glutathionylation in controlling the nature of the HDM-induced adaptive immune responses by promoting Type-2-driven inflammation and restricting IL-17A.

9.
J Allergy Clin Immunol ; 137(3): 822-32.e7, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26435004

RESUMEN

BACKGROUND: Evidence for association between asthma and the unfolded protein response is emerging. Endoplasmic reticulum resident protein 57 (ERp57) is an endoplasmic reticulum-localized redox chaperone involved in folding and secretion of glycoproteins. We have previously demonstrated that ERp57 is upregulated in allergen-challenged human and murine lung epithelial cells. However, the role of ERp57 in asthma pathophysiology is unknown. OBJECTIVES: Here we sought to examine the contribution of airway epithelium-specific ERp57 in the pathogenesis of allergic asthma. METHODS: We examined the expression of ERp57 in human asthmatic airway epithelium and used murine models of allergic asthma to evaluate the relevance of epithelium-specific ERp57. RESULTS: Lung biopsy specimens from asthmatic and nonasthmatic patients revealed a predominant increase in ERp57 levels in epithelium of asthmatic patients. Deletion of ERp57 resulted in a significant decrease in inflammatory cell counts and airways resistance in a murine model of allergic asthma. Furthermore, we observed that disulfide bridges in eotaxin, epidermal growth factor, and periostin were also decreased in the lungs of house dust mite-challenged ERp57-deleted mice. Fibrotic markers, such as collagen and α smooth muscle actin, were also significantly decreased in the lungs of ERp57-deleted mice. Furthermore, adaptive immune responses were dispensable for house dust mite-induced endoplasmic reticulum stress and airways fibrosis. CONCLUSIONS: Here we show that ERp57 levels are increased in the airway epithelium of asthmatic patients and in mice with allergic airways disease. The ERp57 level increase is associated with redox modification of proinflammatory, apoptotic, and fibrotic mediators and contributes to airways hyperresponsiveness. The strategies to inhibit ERp57 specifically within the airways epithelium might provide an opportunity to alleviate the allergic asthma phenotype.


Asunto(s)
Alérgenos/inmunología , Asma/inmunología , Asma/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/metabolismo , Animales , Asma/patología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biopsia , Caspasa 3/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibrosis , Expresión Génica , Humanos , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Transgénicos , Proteína Disulfuro Isomerasas/genética , Hipersensibilidad Respiratoria/patología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo
10.
Free Radic Biol Med ; 73: 143-53, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24816292

RESUMEN

Interleukin-17A (IL-17A) is a newly emerging player in the pathogenesis of chronic lung diseases that amplifies inflammatory responses and promotes tissue remodeling. Stimulation of lung epithelial cells with IL-17A leads to activation of the transcription factor nuclear factor κB (NF-κB), a key player in the orchestration of lung inflammation. We have previously demonstrated the importance of the redox-dependent posttranslational modification S-glutathionylation in limiting activation of NF-κB and downstream gene induction. Under physiological conditions, the enzyme glutaredoxin 1 (Grx1) acts to deglutathionylate NF-κB proteins, which restores functional activity. In this study, we sought to determine the impact of S-glutathionylation on IL-17A-induced NF-κB activation and expression of proinflammatory mediators. C10 mouse lung alveolar epithelial cells or primary mouse tracheal epithelial cells exposed to IL-17A show rapid activation of NF-κB and the induction of proinflammatory genes. Upon IL-17A exposure, sulfenic acid formation and S-glutathionylated proteins increased. Assessment of S-glutathionylation of NF-κB pathway components revealed S-glutathionylation of RelA (RelA-SSG) and inhibitory κB kinase α (IKKα-SSG) after stimulation with IL-17A. SiRNA-mediated ablation of Grx1 increased both RelA-SSG and IKKα-SSG and acutely increased nuclear content of RelA and tended to decrease nuclear RelB. SiRNA-mediated ablation or genetic ablation of Glrx1 decreased the expression of the NF-κB-regulated genes KC and CCL20 in response to IL-17A, but conversely increased the expression of IL-6. Last, siRNA-mediated ablation of IKKα attenuated nuclear RelA and RelB content and decreased expression of KC and CCL20 in response to IL-17A. Together, these data demonstrate a critical role for the S-glutathionylation/Grx1 redox axis in regulating IKKα and RelA S-glutathionylation and the responsiveness of epithelial cells to IL-17A.


Asunto(s)
Glutarredoxinas/genética , Quinasa I-kappa B/metabolismo , Interleucina-17/metabolismo , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIB/metabolismo , Animales , Células Cultivadas , Quimiocina CCL20/biosíntesis , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Glutatión/química , Quinasa I-kappa B/genética , Inflamación/inmunología , Inflamación/patología , Interleucina-6/biosíntesis , Pulmón/citología , Enfermedades Pulmonares/patología , Ratones , Ratones Noqueados , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Interferencia de ARN , ARN Interferente Pequeño , Mucosa Respiratoria/citología , Ácidos Sulfénicos/metabolismo , Tráquea/citología
11.
Am J Physiol Lung Cell Mol Physiol ; 306(9): L866-75, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24610935

RESUMEN

Chronic allergic asthma leads to airway remodeling and subepithelial fibrosis via mechanisms not fully understood. Airway remodeling is amplified by profibrotic mediators, such as transforming growth factor-ß1 (TGF-ß1), which plays a cardinal role in various models of fibrosis. We recently have identified a critical role for c-Jun-NH2-terminal-kinase (JNK) 1 in augmenting the profibrotic effects of TGF-ß1, linked to epithelial-to-mesenchymal transition of airway epithelial cells. To examine the role of JNK1 in house dust mite (HDM)-induced airway remodeling, we induced allergic airway inflammation in wild-type (WT) and JNK1-/- mice by intranasal administration of HDM extract. WT and JNK1-/- mice were sensitized with intranasal aspirations of HDM extract for 15 days over 3 wk. HDM caused similar increases in airway hyperresponsiveness, mucus metaplasia, and airway inflammation in WT and JNK1-/- mice. In addition, the profibrotic cytokine TGF-ß1 and phosphorylation of Smad3 were equally increased in WT and JNK1-/- mice. In contrast, increases in collagen content in lung tissue induced by HDM were significantly attenuated in JNK1-/- mice compared with WT controls. Furthermore HDM-induced increases of α-smooth muscle actin (α-SMA) protein and mRNA expression as well as the mesenchymal markers high-mobility group AT-hook 2 and collagen1A1 in WT mice were attenuated in JNK1-/- mice. The let-7 family of microRNAs has previously been linked to fibrosis. HDM exposure in WT mice and primary lung epithelial cells resulted in striking decreases in let-7g miRNA that were not observed in mice or primary lung epithelial cells lacking JNK1-/- mice. Overexpression of let-7g in lung epithelial cells reversed the HDM-induced increases in α-SMA. Collectively, these findings demonstrate an important requirement for JNK1 in promoting HDM-induced fibrotic airway remodeling.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Hiperreactividad Bronquial/patología , Dermatophagoides pteronyssinus/patogenicidad , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Neumonía/patología , Sistema Respiratorio/patología , Animales , Western Blotting , Hiperreactividad Bronquial/etiología , Hiperreactividad Bronquial/metabolismo , Citocinas/genética , Citocinas/metabolismo , Técnicas para Inmunoenzimas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía/etiología , Neumonía/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sistema Respiratorio/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
12.
Am J Respir Crit Care Med ; 189(4): 463-74, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24325366

RESUMEN

RATIONALE: The death receptor Fas is critical for bacterial clearance and survival of mice after Pseudomonas aeruginosa infection. OBJECTIVES: Fas ligand (FasL)-induced apoptosis is augmented by S-glutathionylation of Fas (Fas-SSG), which can be reversed by glutaredoxin-1 (Grx1). Therefore, the objective of this study was to investigate the interplay between Grx1 and Fas in regulating the clearance of P. aeruginosa infection. METHODS: Lung samples from patients with bronchopneumonia were analyzed by immunofluorescence. Primary tracheal epithelial cells, mice lacking the gene for Grx1 (Glrx1(-/-)), Glrx1(-/-) mice treated with caspase inhibitor, or transgenic mice overexpressing Grx1 in the airway epithelium were analyzed after infection with P. aeruginosa. MEASUREMENTS AND MAIN RESULTS: Patient lung samples positive for P. aeruginosa infection demonstrated increased Fas-SSG compared with normal lung samples. Compared with wild-type primary lung epithelial cells, infection of Glrx1(-/-) cells with P. aeruginosa showed enhanced caspase 8 and 3 activities and cell death in association with increases in Fas-SSG. Infection of Glrx1(-/-) mice with P. aeruginosa resulted in enhanced caspase activity and increased Fas-SSG as compared with wild-type littermates. Absence of Glrx1 significantly enhanced bacterial clearance, and decreased mortality postinfection with P. aeruginosa. Inhibition of caspases significantly decreased bacterial clearance postinfection with P. aeruginosa, in association with decreased Fas-SSG. In contrast, transgenic mice that overexpress Grx1 in lung epithelial cells had significantly higher lung bacterial loads, enhanced mortality, decreased caspase activation, and Fas-SSG in the lung after infection with P. aeruginosa, compared with wild-type control animals. CONCLUSIONS: These results suggest that S-glutathionylation of Fas within the lung epithelium enhances epithelial apoptosis and promotes clearance of P. aeruginosa and that glutaredoxin-1 impairs bacterial clearance and increases the severity of pneumonia in association with deglutathionylation of Fas.


Asunto(s)
Bronconeumonía/metabolismo , Glutarredoxinas/metabolismo , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa , Receptor fas/metabolismo , Animales , Apoptosis , Carga Bacteriana , Biomarcadores/metabolismo , Bronconeumonía/microbiología , Caspasas/metabolismo , Citocinas/metabolismo , Glutatión/metabolismo , Humanos , Pulmón/metabolismo , Pulmón/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Infecciones por Pseudomonas/microbiología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/microbiología , Índice de Severidad de la Enfermedad
13.
Respir Res ; 14: 141, 2013 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-24364984

RESUMEN

BACKGROUND: The endoplasmic reticulum (ER) stress response participates in many chronic inflammatory and autoimmune diseases. In the current study, we sought to examine the contribution of ER stress transducers in the pathogenesis of three principal facets of allergic asthma: inflammation, airway fibrosis, and airways hyperresponsiveness. METHODS: House Dust Mite (HDM) was used as an allergen for in vitro and in vivo challenge of primary human and murine airway epithelial cells. ER stress transducers were modulated using specific small interfering RNAs (siRNAs) in vivo. Inflammation, airway remodeling, and hyperresponsiveness were measured by total bronchoalveolar lavage (BAL) cell counts, determination of collagen, and methacholine responsiveness in mice, respectively. RESULTS: Challenge of human bronchiolar and nasal epithelial cells with HDM extract induced the ER stress transducer, activating transcription factor 6 α (ATF6α) as well as protein disulfide isomerase, ERp57, in association with activation of caspase-3. SiRNA-mediated knockdown of ATF6α and ERp57 during HDM administration in mice resulted in a decrease in components of HDM-induced ER stress, disulfide mediated oligomerization of Bak, and activation of caspase-3. Furthermore, siRNA-mediated knockdown of ATF6α and ERp57 led to decreased inflammation, airway hyperresponsiveness and airway fibrosis. CONCLUSION: Collectively, our work indicates that HDM induces ER stress in airway epithelial cells and that ATF6α and ERp57 play a significant role in the development of cardinal features of allergic airways disease. Inhibition of ER stress responses may provide a potential therapeutic avenue in chronic asthma and sub-epithelial fibrosis associated with loss of lung function.


Asunto(s)
Apoptosis , Bronquios/patología , Estrés del Retículo Endoplásmico/fisiología , Células Epiteliales/patología , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/fisiopatología , Pyroglyphidae/fisiología , Factor de Transcripción Activador 6/deficiencia , Factor de Transcripción Activador 6/efectos de los fármacos , Factor de Transcripción Activador 6/genética , Animales , Bronquios/metabolismo , Bronquios/fisiopatología , Caspasa 3/metabolismo , Línea Celular , Células Cultivadas , Colágeno/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Humanos , Técnicas In Vitro , Cloruro de Metacolina/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteína Disulfuro Isomerasas/deficiencia , Proteína Disulfuro Isomerasas/efectos de los fármacos , Proteína Disulfuro Isomerasas/genética , Fibrosis Pulmonar/metabolismo , ARN Interferente Pequeño/farmacología
14.
J Immunol ; 191(12): 5811-21, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24227776

RESUMEN

NF-κB activation within the epithelium has been implicated in the pathogenesis of asthma, yet the exact role of epithelial NF-κB in allergen-induced inflammation and airway remodeling remains unclear. In the current study, we used an intranasal house dust mite (HDM) extract exposure regimen time course in BALB/c mice to evaluate inflammation, NF-κB activation, airway hyperresponsiveness (AHR), and airway remodeling. We used CC10-IκBαSR transgenic mice to evaluate the functional importance of epithelial NF-κB in response to HDM. After a single exposure of HDM, mRNA expression of proinflammatory mediators was significantly elevated in lung tissue of wild-type (WT) mice, in association with increases in nuclear RelA and RelB, components of the classical and alternative NF-κB pathway, respectively, in the bronchiolar epithelium. In contrast, CC10-IκBαSR mice displayed marked decreases in nuclear RelA and RelB and mRNA expression of proinflammatory mediators compared with WT mice. After 15 challenges with HDM, WT mice exhibited increases in inflammation, AHR, mucus metaplasia, and peribronchiolar fibrosis. CC10-IκBαSR transgenic mice displayed marked decreases in neutrophilic infiltration, tissue damping, and elastance parameters, in association will less peribronchiolar fibrosis and decreases in nuclear RelB in lung tissue. However, central airway resistance and mucus metaplasia remained elevated in CC10-IκBαSR transgenic mice, in association with the continued presence of lymphocytes, and partial decreases in eosinophils and IL-13. The current study demonstrates that following airway exposure with an asthma-relevant allergen, activation of classical and alternative NF-κB pathways occurs within the airway epithelium and may coordinately contribute to allergic inflammation, AHR, and fibrotic airway remodeling.


Asunto(s)
Antígenos Dermatofagoides/toxicidad , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/inmunología , Pulmón/inmunología , FN-kappa B/fisiología , Pyroglyphidae/inmunología , Administración Intranasal , Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Animales , Antígenos Dermatofagoides/administración & dosificación , Bronquiolos/patología , Líquido del Lavado Bronquioalveolar/citología , Línea Celular , Eosinófilos/inmunología , Epitelio/patología , Fibrosis , Humanos , Proteínas I-kappa B/genética , Mediadores de Inflamación/metabolismo , Interleucina-13/inmunología , Pulmón/efectos de los fármacos , Pulmón/patología , Linfocitos/inmunología , Macrófagos/inmunología , Metaplasia , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Inhibidor NF-kappaB alfa , FN-kappa B/biosíntesis , FN-kappa B/genética , Neutrófilos/inmunología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Método Simple Ciego , Uteroglobina/genética
15.
J Cell Biochem ; 114(9): 1962-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23554102

RESUMEN

Glutathione has traditionally been considered as an antioxidant that protects cells against oxidative stress. Hence, the loss of reduced glutathione and formation of glutathione disulfide is considered a classical parameter of oxidative stress that is increased in diseases. Recent studies have emerged that demonstrate that glutathione plays a more direct role in biological and pathophysiological processes through covalent modification to reactive cysteines within proteins, a process known as S-glutathionylation. The formation of an S-glutathionylated moiety within the protein can lead to structural and functional modifications. Activation, inactivation, loss of function, and gain of function have all been attributed to S-glutathionylation. In pathophysiological settings, S-glutathionylation is tightly regulated. This perspective offers a concise overview of the emerging field of protein thiol redox modifications. We will also cover newly developed methodology to detect S-glutathionylation in situ, which will enable further discovery into the role of S-glutathionylation in biology and disease.


Asunto(s)
Glutatión/metabolismo , Animales , Biotina/metabolismo , Glutarredoxinas/metabolismo , Humanos , Oxidación-Reducción , Compuestos de Sulfhidrilo/metabolismo
16.
Am J Physiol Lung Cell Mol Physiol ; 303(6): L528-38, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22752969

RESUMEN

Protein-S-glutathionylation (PSSG) is an oxidative modification of reactive cysteines that has emerged as an important player in pathophysiological processes. Under physiological conditions, the thiol transferase, glutaredoxin-1 (Glrx1) catalyses deglutathionylation. Although we previously demonstrated that Glrx1 expression is increased in mice with allergic inflammation, the impact of Glrx1/PSSG in the development of allergic airways disease remains unknown. In the present study we examined the impact of genetic ablation of Glrx1 in the pathogenesis of allergic inflammation and airway hyperresponsiveness (AHR) in mice. Glrx1(-/-) or WT mice were subjected to the antigen, ovalbumin (OVA), and parameters of allergic airways disease were evaluated 48 h after three challenges, and 48 h or 7 days after six challenges with aerosolized antigen. Although no clear increases in PSSG were observed in WT mice in response to OVA, marked increases were detected in lung tissue of mice lacking Glrx1 48 h following six antigen challenges. Inflammation and expression of proinflammatory mediators were decreased in Glrx1(-/-) mice, dependent on the time of analysis. WT and Glrx1(-/-) mice demonstrated comparable increases in AHR 48 h after three or six challenges with OVA. However, 7 days postcessation of six challenges, parameters of AHR in Glrx1(-/-) mice were resolved to control levels, accompanied by marked decreases in mucus metaplasia and expression of Muc5AC and GOB5. These results demonstrate that the Glrx1/S-glutathionylation redox status in mice is a critical regulator of AHR, suggesting that avenues to increase S-glutathionylation of specific target proteins may be beneficial to attenuate AHR.


Asunto(s)
Hiperreactividad Bronquial/inmunología , Glutarredoxinas/genética , Pulmón/patología , Moco , Animales , Glutarredoxinas/deficiencia , Glutatión/metabolismo , Enfermedades Pulmonares/patología , Metaplasia/patología , Ratones , Ovalbúmina/inmunología , Neumonía/etiología , Proteínas/metabolismo
17.
Am J Respir Cell Mol Biol ; 47(4): 497-508, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22652196

RESUMEN

The transcription factor NF-κB has been causally linked to inflammatory lung diseases. Recent studies have unraveled the complexity of NF-κB activation by identifying two parallel activation pathways: the classical NF-κB pathway, which is controlled by IκB kinase complex-ß (IKKß) and RelA/p50, and the alternative pathway, which is controlled by IKKα and RelB/p52. The alternative pathway regulates adaptive immune responses and lymphoid development, yet its role in the regulation of innate immune responses remains largely unknown. In this study, we determined the relevance of the alternative NF-κB pathway in proinflammatory responses in lung epithelial cells. The exposure of C10 murine alveolar lung epithelial cells to diverse stimuli, or primary murine tracheal epithelial cells to LPS, resulted in the activation of both NF-κB pathways, based on the nuclear translocation of RelA, p50, RelB, and p52. Increases in the nuclear content of RelA occurred rapidly, but transiently, whereas increases in nuclear RelB content were protracted. The small interfering (si) RNA-mediated knockdown of IKKα, RelA, or RelB resulted in decreases of multiple LPS-induced proinflammatory cytokines. Surprisingly, the siRNA ablation of IKKα or RelB led to marked increases in the production of IL-6 in response to LPS. The simultaneous expression of constitutively active (CA)-IKKα and CA-IKKß caused synergistic increases in proinflammatory mediators. Lastly, the disruption of the IKK signalsome inhibited the activation of both NF-κB pathways. These results demonstrate that the coordinated activation of both NF-κB pathways regulates the magnitude and nature of proinflammatory responses in lung epithelial cells.


Asunto(s)
Mediadores de Inflamación/metabolismo , FN-kappa B/metabolismo , Mucosa Respiratoria/metabolismo , Transducción de Señal , Animales , Anoctaminas , Células Cultivadas , Canales de Cloruro , Citocinas/genética , Citocinas/metabolismo , Citocinas/fisiología , Expresión Génica , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Lipopolisacáridos/farmacología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , Cultivo Primario de Células , Interferencia de ARN , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Tráquea/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...