Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 11: 1239604, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37577065

RESUMEN

Molecules with an inverted singlet-triplet gap (STG) between the first excited singlet and triplet states, for example, heptazine, have recently been reported and gained substantial attention since they violate the famous Hund's rule. Utilizing state-of-the-art high-level ab initio methods, the singlet-triplet gap vanishes and approaches zero from below whatever is improved in the theoretical description of the molecules: the basis set or the level of electron correlation. Seemingly, the phenomenon of inverted singlet-triplet gaps tends to vanish the closer we observe.

2.
Adv Sci (Weinh) ; 9(27): e2202710, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35896771

RESUMEN

Buchwald-Hartwig coupling of a triisopropylsilyl (TIPS)-ethynylated dibromo-N,N'-dihydrotetraazapentacene with 1,4-bis(TIPS-ethynyl)-2,3-diaminonaphthalene furnishes a dihydrohexaazaoctacene. Its oxidation with MnO2 results in a 7,7'-bi(hexaazaoctacenyl). In addition to eight TIPS-ethynyl groups, the bioctacene motif protects the azaoctacene subunits. The biazaoctacenyl displays a τ1/2 of > 5 d in dilute solution under ambient conditions. In the crystalline state it is persistent for > 10 months.

3.
Chemistry ; 28(34): e202200326, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35293646

RESUMEN

A family of fully bridged triphenylamines with embedded 5- and 7-membered rings is presented. The compounds are potent electron donors capable to undergo donor/acceptor interactions with strong cyano-based acceptors both in the solid state and solution. These interactions were evaluated by IR and UV/vis spectroscopy as well as X-ray crystallography. The vinylene-bridged compound was oxidized to the corresponding 1,2-diketone which readily underwent acid-catalyzed condensation with selected 1,2-phenylenediamines. The resulting π-extended quinoxaline derivatives represent valuable building blocks for the development of functional chromophores upon appropriate functionalization.

4.
Chemistry ; 28(12): e202104203, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35020239

RESUMEN

The transition-metal-catalyzed cyclization of bissilylethynylated N,N'-dihydrotetraazapentacene (TIPS-TAP-H2 ) into bissilylated cyclopenta[fg,qr]pentacenes is reported. Depending on the catalyst either none, one or two silyl groups migrate and change their positions in the formed five-membered rings. The optoelectronic properties are quite similar, whereas the packing motifs differ dramatically. Control experiments and quantum chemical calculations were performed to investigate the mechanism of the reaction and the selectivity of the silyl shift.

5.
Phys Chem Chem Phys ; 24(6): 3924-3932, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35094035

RESUMEN

N-Heteropolycyclic aromatic compounds are promising organic semiconductors for applications in field effect transistors and solar cells. Thereby the electronic structure of organic/metal interfaces and thin films is essential for the performance of organic-molecule-based devices. Here, we studied the structural and the electronic properties of 6,7,12,13-tetraazapentacene (TAP) adsorbed on Au(111) using vibrational and electronic high-resolution electron energy loss spectroscopy in combination with state-of-the-art quantum chemical calculations. In the mono- and multilayer TAP adsorbs in a planar adsorption geometry with the molecular backbone oriented parallel to the gold substrate. The energies of the lowest excited electronic singlet states (S) as well as the triplet state (T) are assigned. The optical gap (S0 → S1 transition) is found to be 1.6 eV and the T1 energy 1.2 eV. In addition, thorough comparison to previously studied pentacene (PEN) and 6,13-diazapentacene (6,13-DAP) is made explaining in detail the influence of nitrogen substitution on the electronic structure and in particular on the intensity of the α-band in the UV/vis absorption spectrum. In the series PEN, 6,13-DAP, and TAP, the α-band (S0 → S2 transition) gains significantly in intensity due to individual effects of the introduced nitrogen atoms on the orbital energies.

6.
Chemistry ; 27(59): 14778-14784, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34310792

RESUMEN

Herein, we describe a gold-catalyzed cascade cyclization of Boc-protected benzylamines bearing two tethered alkyne moieties in a domino reaction initiated by a 6-endo-dig cyclization. The reaction was screened intensively, and the scope was explored, resulting in nine new Boc-protected dihydrobenzo[c]phenanthridines with yields of up to 98 %; even a π-extension and two bidirectional approaches were successful. Furthermore, thermal cleavage of the Boc group and subsequent oxidation gave substituted benzo[c]phenanthridines in up to quantitative yields. Two bidirectional approaches under the optimized conditions were successful, and the resulting π-extended molecules were tested as organic semiconductors in organic thin-film transistors.


Asunto(s)
Alquinos , Fenantridinas , Catálisis , Ciclización , Estructura Molecular
7.
Dalton Trans ; 50(25): 8752-8760, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34079966

RESUMEN

The reactivity of cationic (C^C)gold(iii) carbonyl complexes was investigated. While the in situ-formed IPrAu(bph)CO+ complex (bph = biphenyl-2,2'-diyl) does not undergo a migratory insertion of CO into the neighboring gold-carbon bond, nucleophiles can attack the coordinated CO moiety intermolecularly. Water as a nucleophile initiates a CO2 extrusion combined with a reductive C,H bond formation. The rapid formation of a gold(i) species from an intermediary gold(iii) carbonyl has not been observed before and shows a significant difference in reactivity between (C^C) and (C^N^C)gold(iii) carbonyls. The latter have been reported to form stable gold(iii) hydrides via the WGS reaction. In the case of methanol acting as a nucleophile attacking the gold(iii) carbonyl, no extrusion of CO2 is observed. Instead an intermediary gold(iii) carboxyl complex forms an aryl carboxylate via reductive C-C bond elimination. Experimental and theoretical studies on the mechanism explain the observed selectivities and give new insights into the reactivity of elusive gold(iii) carbonyls.

8.
J Comput Chem ; 42(20): 1402-1418, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-33993548

RESUMEN

Excitonic coupling plays a key role for the understanding of excitonic energy transport (EET) in, for example, organic photovoltaics. However, the calculation of realistic systems is often beyond the applicability range of accurate wavefunction methods so that lower-scaling semi-empirical methods are used to model EET events. In the present work, the distance and angle dependence of excitonic couplings of dimers of selected organic molecules are evaluated for the semi-empirical long-range corrected density functional based tight binding (LC-DFTB) method and spin opposite scaled second order approximate coupled cluster singles and doubles (SOS-CC2). While semi-empirically scaled methods can lead to slightly increased deviations for excitation energies, the excitonic couplings and their dependence on the dimer geometry are reproduced. LC-DFTB yields a similar accuracy range as density-functional theory (DFT) employing the ωB97X functional while the computation time is reduced by several orders of magnitude. The dependence of the exchange contributions to the excitonic couplings on the dimer geometry is analyzed assessing the calculation of Coulombic excitonic couplings from monomer local excited states only, which reduces the computational effort significantly. The present work is a necessary first step toward the simulation of excitonic energy transport using semi-empirical methods.

9.
J Org Chem ; 86(11): 7477-7489, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-33988028

RESUMEN

The conjugated π-system in polyenes can be interrupted by electrocyclic ring-closure reactions. In this work, this 6π-electrocylization is shown by means of density functional calculations to be reversible by the application of an external mechanical pulling force at the terminal ends of the interrupted polyene chain. The test systems were constrained in a fused ring system, thus locking the orientation of three π-bonds and generally promoting 6π-electrocyclic ring-closure reactions. For several systems, the forward reaction is exergonic and the corresponding reaction barrier is comparable to those reported in the literature. The reverse reaction is triggered by an external pulling force of 2 nN (nano-Newton) or less and also becomes exergonic in all investigated polyenes under these force conditions. Moreover, it proceeds via a low reaction barrier when a pulling force of 2 nN is active, indicating that the mechanical force is an efficient stimulus for triggering ring-opening reactions. Analysis of the strain energy induced by this mechanical force confirms an optimal activation of the corresponding C-C σ-bond that breaks upon ring opening when the pulling positions are located on the polyene chain.

10.
J Comput Chem ; 42(11): 793-800, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33595128

RESUMEN

Excited state properties are difficult to trace back to the common molecular orbital picture when the excited state wavefunction is a linear combination of two or more Slater determinants. Here, a theoretical methodology is introduced based on the algebraic diagrammatic construction scheme for the polarization propagator (ADC(n)) that allows to make this connection and to eventually derive structure-function relationships. The usefulness of this approach is demonstrated by an analysis of the transition dipole moments of the low-lying 1B3u and 2B3u states of anthracene and (1,4,5,8)-tetraazaanthracene.

11.
Chemistry ; 27(6): 2072-2081, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-32902008

RESUMEN

N-Heteropolycycles are among the most promising candidates for applications in organic devices. For this purpose, a profound understanding of the low-energy electronic absorbance and emission characteristics is of crucial importance. Herein, we report high-resolution absorbance and fluorescence spectra of pentacene (PEN) and 6,13-diazapentacene (DAP) in solid neon obtained using the matrix-isolation technique. Accompanying DFT calculations allow the assignment of specific vibrationally resolved signals to corresponding modes. Furthermore, we present for the first time evidence for the formation of van der Waals dimers of both substances. These dimers exhibit significantly different optical characteristics resulting from the change of electronic properties evoked by the incorporation of sp2 nitrogen into the molecular backbone.

12.
Chemistry ; 27(10): 3397-3406, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33170967

RESUMEN

A hitherto unexplored class of molecules for molecular force probe applications are expanded porphyrins. This work proves that mechanical force is an effective stimulus to trigger the interconversion between Hückel and Möbius topologies in [28]hexaphyrin, making these expanded porphyrins suitable to act as conformational mechanophores operating at mild (sub-1 nN) force conditions. A straightforward approach based on distance matrices is proposed for the selection of pulling scenarios that promote either the planar Hückel topology or the three lowest lying Möbius topologies. This approach is supported by quantum mechanochemical calculations. Force distribution analyses reveal that [28]hexaphyrin selectively allocates the external mechanical energy to molecular regions that trigger Hückel-Möbius interconversions, explaining why certain pulling scenarios favor the Hückel two-sided topology and others favor Möbius single-sided topologies. The meso-substitution pattern on [28]hexaphyrin determines whether the energy difference between the different topologies can be overcome by mechanical activation.

13.
J Org Chem ; 85(23): 15256-15272, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33147019

RESUMEN

Homoconjugation and intramolecular "through-space" charge transfers are molecular phenomena that have been studied since the 1960s. A detailed understanding and control of these effects would provide a tool to tune the optoelectronic properties of organic molecules in respect of the necessities for applications such as for organic electronics. Triptycene is a perfect candidate to investigate homoconjugation effects due to its three-dimensional alignment of three aromatic phenylene units, separated by two methine bridges. Here, a series of 16 π-extended triptycenes with up to three different permuted electron-accepting units and an electron-rich veratrole unit are studied in detail by UV/vis spectroscopy and cyclovoltammetry in combination with DFT calculations to get a deeper understanding of homoconjugation and charge-transfer processes of triptycenes. Furthermore, the gained knowledge can be exploited to construct triptycene-based electron acceptors with fine-tuned adjustment of electronic properties, such as electron affinities, by thorough choice of the aromatic blades that interact through homoconjugation.

14.
Chemistry ; 26(67): 15573-15580, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32472581

RESUMEN

An unprecedented direct atom-economic chemo- and regioselective hydroalkylation of chloroalkynes and an sp3 -C-H alkynylation of bromoalkynes was achieved. The reaction partners are unfunctionalized ethers, alcohols, amides, and even non-activated hydrocarbons. We found that a household fluorescent bulb was able to excite a diaryl ketone, which then selectively abstracts a H-atom from an sp3 -C-H bond. The product of a formal alkyne insertion into the sp3 -C-H bond was obtained with chloroalkynes, providing valuable vinyl chlorides. The photo-organocatalytic hydrogen atom transfer strategy gives rise to a broad range of diversely functionalized olefins. When bromoalkynes are applied in the presence of a base, a chemoselectivity switch to an alkynylation is observed. This reaction can even be performed for the alkynylation of unactivated sp3 -C-H bonds, in this case with a preference of the more substituted carbon. Accompanying quantum chemical calculations indicate a vinyl radical intermediate with pronounced linear coordination of the carbon radical center, thus enabling the formation of both diastereoisomers after H-atom abstraction, suggesting that the (Z)-diastereoisomer is preferred, which supports the experimentally observed (E/Z)-distribution.

15.
Chemistry ; 26(23): 5280-5287, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32092204

RESUMEN

Gold-catalyzed cyclization of 1,5-diynes with ketones as reagents and solvent provides diversely substituted vinyl ethers under mild conditions. The regioselectivity of such gold-catalyzed cyclizations is usually controlled by the scaffold of the diyne. Herein, we report the first solvent-controlled switching of regioselectivity from a 6-endo-dig- to 5-endo-dig-cyclization in these transformations, providing fulvene derivatives. With respect to the functional-group tolerance, aryl fluorides, chlorides, bromides, and ethers are tolerated. Furthermore, the mechanism and selectivity are put to scrutiny by experimental studies and a thermodynamic analysis of the product. Additionally, 6-(vinyloxy)fulvenes are a hitherto unknown class of compounds. Their reactivity is briefly evaluated, to give insights into their potential applications.

16.
J Phys Chem Lett ; 10(20): 6112-6117, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31573203

RESUMEN

The 1La and 1Lb classification of electronically excited states of cata-condensed hydrocarbons proposed by Platt in 1949 ( Platt , J. R. J. Chem. Phys. 1949 , 17 , 484 ) is challenged by investigating a series of N-heteronaphthalenes and comparison of their low-lying ππ* excited states to those of naphthalene. The breakdown of Platt's classification scheme for N-heterocycles is highlighted, and a reliable and versatile alternative using exciton analyses is presented. The strength of electron-hole correlation turns out to be the most reliable distinguishing feature, and thus, an alternative nomenclature of 1Lw (weakly correlated) and 1Ls (strongly correlated) is proposed. Furthermore, fundamental guidelines for their property modulation through N-atom substitution patterns are discussed.

17.
Chemistry ; 25(66): 15147-15154, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31482610

RESUMEN

N-Heteropolycycles are attractive as materials in organic electronic devices. However, a detailed understanding of the low-energy electronic excitation characteristics of these species is still lacking. In this work, the matrix isolation technique is applied to obtain high-resolution absorbance spectra for a series of tetracene and core-substituted N-analogues. The experimental electronic excitation spectra obtained for matrix-isolated molecules are then analysed with the help of quantum-chemical calculations. Additional lower energy excitation bands in the spectrum of the core-substituted N-derivatives of tetracene could be explained in terms of intensity borrowing from dipole-forbidden transitions due to Herzberg-Teller vibronic coupling. In the case of tetracene, evidence for the additional formation of London dimers (J aggregates) is found at higher tetracene concentrations in the matrix.

18.
Angew Chem Int Ed Engl ; 58(31): 10650-10654, 2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31125478

RESUMEN

The oxidative cyclodehydrogenation (often named the Scholl reaction) is still a powerful synthetic tool to construct even larger polycyclic aromatic hydrocarbons (PAHs) by multiple biaryl bond formations without the necessity of prior installation of reacting functional groups. Scholl-type reactions are usually very selective although the resulting products bear sometimes some surprises, such as the formation of five-membered instead of six-membered rings or the unexpected migration of aryl moieties. There are a few examples, where chlorinated byproducts were found when FeCl3 was used as reagent. To our knowledge, the direct functionalization of PAHs during Scholl-type cyclization by triflyloxylation has not been observed. Herein we describe the synthesis of functionalized PAHs by the formation of five-membered rings and a regioselective triflyloxylation in one step. The triflyloxylated PAHs can be used as reactants for further transformation to even larger contorted PAHs.

19.
Chemphyschem ; 17(10): 1486-92, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-26928925

RESUMEN

Detailed folding pathways of proteins are still largely unknown. Real-time monitoring of mechanical forces acting in proteins during structural transitions would provide deep insights into these highly complex processes. Here, we propose two molecular force probes that can be incorporated into the protein backbone to gain insight into the magnitude and direction of mechanical forces acting in proteins during natural folding and unfolding through their optical spectroscopic response. In fact, changes in the infrared and Raman spectra are proportional to the mechanical force deforming the force probes, and the relevant bands can be intensified and shifted to a transparent window in the protein spectrum by isotopic substitution. As a result, the proposed molecular force probes can act as "force rulers", allowing the spectroscopic observation and measurement of mechanical forces acting within the proteins under natural conditions without external perturbation.


Asunto(s)
Fenómenos Mecánicos , Sondas Moleculares , Pliegue de Proteína , Proteínas/química , Espectrofotometría Infrarroja/métodos , Espectrometría Raman/métodos , Enlace de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...