Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1793(7): 1191-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19450626

RESUMEN

TIF-IA is a basal transcription factor of RNA polymerase I (Pol I) that is a major target of the JNK2 signaling pathway in response to ribotoxic stress. Using advanced fluorescence microscopy and kinetic modeling we elucidated the subcellular localization of TIF-IA and its exchange dynamics between the nucleolus, nucleoplasm and cytoplasm upon ribotoxic stress. In steady state, the majority of (GFP-tagged) TIF-IA was in the cytoplasm and the nucleus, a minor portion (7%) localizing to the nucleoli. We observed a rapid shuttling of GFP-TIF-IA between the different cellular compartments with a mean residence time of approximately 130 s in the nucleus and only approximately 30 s in the nucleoli. The import rate from the cytoplasm to the nucleus was approximately 3-fold larger than the export rate, suggesting an importin/exportin-mediated transport rather than a passive diffusion. Upon ribotoxic stress, GFP-TIF-IA was released from the nucleoli with a half-time of approximately 24 min. Oxidative stress and inhibition of protein synthesis led to a relocation of GFP-TIF-IA with slower kinetics while osmotic stress had no effect. The observed relocation was much slower than the nucleo-cytoplasmic and nucleus-nucleolus exchange rates of GFP-TIF-IA, indicating a time-limiting step upstream of the JNK2 pathway. In support of this, time-course experiments on the activity of JNK2 revealed the activation of the JNK kinase as the rate-limiting step.


Asunto(s)
Nucléolo Celular/fisiología , Proteínas Nucleares/metabolismo , Estrés Oxidativo , ARN Polimerasa I/metabolismo , Ribosomas , Factores de Transcripción/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , MAP Quinasa Quinasa 4/metabolismo , Proteínas Nucleares/genética , Biosíntesis de Proteínas/efectos de los fármacos , ARN Polimerasa I/genética , Fracciones Subcelulares , Factores de Transcripción/genética , Transfección
2.
Mol Cell ; 33(3): 344-53, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19217408

RESUMEN

Many studies have detailed the repressive effects of DNA methylation on gene expression. However, the mechanisms that promote active demethylation are just beginning to emerge. Here, we show that methylation of the rDNA promoter is a dynamic and reversible process. Demethylation of rDNA is initiated by recruitment of Gadd45a (growth arrest and DNA damage inducible protein 45 alpha) to the rDNA promoter by TAF12, a TBP-associated factor that is contained in Pol I- and Pol II-specific TBP-TAF complexes. Once targeted to rDNA, Gadd45a triggers demethylation of promoter-proximal DNA by recruiting the nucleotide excision repair (NER) machinery to remove methylated cytosines. Knockdown of Gadd45a, XPA, XPG, XPF, or TAF12 or treatment with drugs that inhibit NER causes hypermethylation of rDNA, establishes heterochromatic histone marks, and impairs transcription. The results reveal a mechanism that recruits the DNA repair machinery to the promoter of active genes, keeping them in a hypomethylated state.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Metilación de ADN/genética , Reparación del ADN , Genes de ARNr/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Animales , Células Cultivadas , Daño del ADN , Humanos , Ratones , Células 3T3 NIH , Factores Asociados con la Proteína de Unión a TATA/genética , Transfección
3.
Genes Dev ; 22(3): 322-30, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18230700

RESUMEN

Actin is associated with all three nuclear RNA polymerases and acts in concert with nuclear myosin I (NM1) to drive transcription. Practically nothing is known regarding the state of actin and the functional interplay of actin and NM1 in transcription. Here we show that actin and NM1 act in concert to promote RNA polymerase I (Pol I) transcription. Drugs that prevent actin polymerization or inhibit myosin function inhibit Pol I transcription in vivo and in vitro. Mutants that stabilize the polymeric state actin are tightly associated with Pol I and activate transcription, whereas a polymerization-deficient mutant does not bind to Pol I and does not promote rDNA transcription. Consistent with nuclear actin and myosin synergizing in transcription activation, NM1 mutants that lack specific functions, such as binding to ATP, actin, or calmodulin, are incapable of associating with Pol I and rDNA. The results show that actin polymerization and the motor function of NM1 are required for association with the Pol I transcription machinery and transcription activation. These observations provide insights into the cooperative action of actin and myosin in the nucleus and reveal an actomyosin-based mechanism in transcription.


Asunto(s)
Actinas/fisiología , Núcleo Celular/fisiología , Miosina Tipo I/fisiología , ARN Polimerasa I/fisiología , Transcripción Genética , Actinas/genética , Línea Celular , ADN Ribosómico/fisiología , Humanos , Mutación , Miosina Tipo I/genética , Unión Proteica , ARN Polimerasa I/genética
4.
Curr Biol ; 14(13): 1200-7, 2004 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-15242618

RESUMEN

Centriole duplication initiates at the G1-to-S transition in mammalian cells and is completed during the S and G2 phases. The localization of a number of protein kinases to the centrosome has revealed the importance of protein phosphorylation in controlling the centriole duplication cycle. Here we show that the human Polo-like kinase 2 (Plk2) is activated near the G1-to-S transition of the cell cycle. Endogenous and overexpressed HA-Plk2 localize with centrosomes, and this interaction is independent of Plk2 kinase activity. In contrast, the kinase activity of Plk2 is required for centriole duplication. Overexpression of a kinase-deficient mutant under S-phase arrest blocks centriole duplication. Downregulation of endogenous Plk2 with small hairpin RNAs interferes with the ability to reduplicate centrioles. Furthermore, centrioles failed to duplicate during the cell cycle of human fibroblasts and U2OS cells after overexpression of a Plk2 dominant-negative mutant. These results show that Plk2 is a physiological centrosomal protein and that its kinase activity is likely to be required for centriole duplication near the G1-to-S phase transition.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Centriolos/fisiología , Centrosoma/fisiología , Regulación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Western Blotting , Proteínas de Ciclo Celular/fisiología , Células Cultivadas/citología , Centrosoma/metabolismo , Ciclina E , Cartilla de ADN , Técnica del Anticuerpo Fluorescente , Células HeLa/citología , Humanos , Mamíferos , Plásmidos/genética , Pruebas de Precipitina , Proteínas Quinasas , Proteínas Serina-Treonina Quinasas/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas de Xenopus/fisiología
5.
Biophys J ; 84(5): 3353-63, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12719264

RESUMEN

Transport and binding of molecules to specific sites are necessary for the assembly and function of ordered supramolecular structures in cells. For analyzing these processes in vivo, we have developed a confocal fluorescence fluctuation microscope that allows both imaging of the spatial distribution of fluorescent molecules with confocal laser scanning microscopy and probing their mobility at specific positions in the cell with fluorescence correlation spectroscopy and continuous fluorescence photobleaching (CP). Because fluorescence correlation spectroscopy is restricted to rapidly diffusing particles and CP to slower processes, these two methods complement each other. For the analysis of binding-related contributions to mobility we have derived analytical expressions for the temporal behavior of CP curves from which the bound fraction and/or the dissociation rate or residence time at binding sites, respectively, can be obtained. In experiments, we investigated HeLa cells expressing different fluorescent proteins: Although enhanced green fluorescent protein (EGFP) shows high mobility, fusions of histone H2B with the yellow fluorescent protein are incorporated into chromatin, and these nuclei exhibit the presence of a stably bound and a freely diffusing species. Nonpermanent binding was found for mTTF-I, a transcription termination factor for RNA polymerase I, fused with EGFP. The cells show fluorescent nucleoli, and binding is transient. CP yields residence times for mTTF-I-EGFP of approximately 13 s.


Asunto(s)
Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Líquido Intracelular/química , Líquido Intracelular/metabolismo , Microscopía Confocal/métodos , Proteínas/química , Proteínas/metabolismo , Espectrometría de Fluorescencia/métodos , Proteínas Bacterianas , Simulación por Computador , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Difusión , Proteínas Fluorescentes Verdes , Células HeLa , Histonas/química , Histonas/metabolismo , Humanos , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Modelos Biológicos , Movimiento (Física) , Unión Proteica , Estadística como Asunto , Factores de Transcripción
6.
Science ; 298(5598): 1623-6, 2002 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-12446911

RESUMEN

We have analyzed the kinetics of assembly and elongation of the mammalian RNA polymerase I complex on endogenous ribosomal genes in the nuclei of living cells with the use of in vivo microscopy. We show that components of the RNA polymerase I machinery are brought to ribosomal genes as distinct subunits and that assembly occurs via metastable intermediates. With the use of computational modeling of imaging data, we have determined the in vivo elongation time of the polymerase, and measurements of recruitment and incorporation frequencies show that incorporation of components into the assembling polymerase is inefficient. Our data provide a kinetic and mechanistic framework for the function of a mammalian RNA polymerase in living cells.


Asunto(s)
Núcleo Celular/metabolismo , ARN Polimerasa I/metabolismo , Transcripción Genética , Animales , Dominio Catalítico , Línea Celular , Nucléolo Celular/metabolismo , Simulación por Computador , ADN Ribosómico/genética , Fluorescencia , Recuperación de Fluorescencia tras Fotoblanqueo , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes , Haplorrinos , Humanos , Hibridación Fluorescente in Situ , Cinética , Análisis de los Mínimos Cuadrados , Proteínas Luminiscentes , Microscopía , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Probabilidad , Regiones Promotoras Genéticas , Subunidades de Proteína , ARN Polimerasa I/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección
7.
EMBO Rep ; 3(11): 1082-7, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12393749

RESUMEN

In mammals, growth-dependent regulation of rRNA synthesis is brought about by the transcription initiation factor TIF-IA. TIF-IA is associated with a fraction of the TBP-containing factor TIF-IB/SL1 and the initiation-competent form of RNA polymerase I (Pol I). We investigated the mechanisms that down-regulate cellular pre-rRNA synthesis and demonstrate that nutrient starvation, density arrest and protein synthesis inhibitors inactivate TIF-IA and impair the association of TIF-IA with Pol I. Moreover, we used a panel of TIF-IA deletion mutants to map the domains that mediate the interaction of TIF-IA with Pol I and TIF-IB/SL1. We found that amino acids 512-609 interact with two subunits of Pol I, RPA43 and PAF67, whereas a short, conserved motif (LARAK, amino acids 411-415) is required for the association of TIF-IA with TAF(I)95 and TAF(I)68. The results uncover an interphase for essential protein-protein interactions that facilitate Pol I preinitiation complex formation.


Asunto(s)
Genes de ARNr , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa I/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Genes Reporteros , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa I/genética , ARN Ribosómico/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA