Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mov Ecol ; 12(1): 37, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725084

RESUMEN

Integrated step-selection analyses (iSSAs) are versatile and powerful frameworks for studying habitat and movement preferences of tracked animals. iSSAs utilize integrated step-selection functions (iSSFs) to model movements in discrete time, and thus, require animal location data that are regularly spaced in time. However, many real-world datasets are incomplete due to tracking devices failing to locate an individual at one or more scheduled times, leading to slight irregularities in the duration between consecutive animal locations. To address this issue, researchers typically only consider bursts of regular data (i.e., sequences of locations that are equally spaced in time), thereby reducing the number of observations used to model movement and habitat selection. We reassess this practice and explore four alternative approaches that account for temporal irregularity resulting from missing data. Using a simulation study, we compare these alternatives to a baseline approach where temporal irregularity is ignored and demonstrate the potential improvements in model performance that can be gained by leveraging these additional data. We also showcase these benefits using a case study on a spotted hyena (Crocuta crocuta).

2.
Glob Chang Biol ; 30(5): e17299, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700905

RESUMEN

While climate change has been shown to impact several life-history traits of wild-living animal populations, little is known about its effects on dispersal and connectivity. Here, we capitalize on the highly variable flooding regime of the Okavango Delta to investigate the impacts of changing environmental conditions on the dispersal and connectivity of the endangered African wild dog (Lycaon pictus). Based on remote sensed flood extents observed over 20 years, we derive two extreme flood scenarios: a minimum and a maximum flood extent, representative of very dry and very wet environmental periods. These conditions are akin to those anticipated under increased climatic variability, as it is expected under climate change. Using a movement model parameterized with GPS data from dispersing individuals, we simulate 12,000 individual dispersal trajectories across the ecosystem under both scenarios and investigate patterns of connectivity. Across the entire ecosystem, surface water coverage during maximum flood extent reduces dispersal success (i.e., the propensity of individuals to disperse between adjacent subpopulations) by 12% and increases dispersal durations by 17%. Locally, however, dispersal success diminishes by as much as 78%. Depending on the flood extent, alternative dispersal corridors emerge, some of which in the immediate vicinity of human-dominated landscapes. Notably, under maximum flood extent, the number of dispersing trajectories moving into human-dominated landscapes decreases by 41% at the Okavango Delta's inflow, but increases by 126% at the Delta's distal end. This may drive the amplification of human-wildlife conflict. While predicting the impacts of climate change on environmental conditions on the ground remains challenging, our results highlight that environmental change may have significant consequences for dispersal patterns and connectivity, and ultimately, population viability. Acknowledging and anticipating such impacts will be key to effective conservation strategies and to preserve vital dispersal corridors in light of climate change and other human-related landscape alterations.


Asunto(s)
Distribución Animal , Cambio Climático , Ecosistema , Inundaciones , Animales , Canidae/fisiología , Especies en Peligro de Extinción
3.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961652

RESUMEN

Using neuroimaging and electrophysiological data to infer neural parameter estimations from theoretical circuits requires solving the inverse problem. Here, we provide a new Julia language package designed to i) compose complex dynamical models in a simple and modular way with ModelingToolkit.jl, ii) implement parameter fitting based on spectral dynamic causal modeling (sDCM) using the Laplace approximation, analogous to MATLAB implementation in SPM12, and iii) leverage Julia's unique strengths to increase accuracy and speed by employing Automatic Differentiation during the fitting procedure. To illustrate the utility of our flexible modular approach, we provide a method to improve correction for fMRI scanner field strengths (1.5T, 3T, 7T) when fitting models to real data.

4.
Neuroimage ; 283: 120412, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37858907

RESUMEN

BACKGROUND: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. METHODS: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. RESULTS: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for d-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. CONCLUSION: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.


Asunto(s)
Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/diagnóstico por imagen , Reproducibilidad de los Resultados , Macrodatos , Neuroimagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen
5.
Landsc Ecol ; 38(4): 981-998, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36941928

RESUMEN

Context: Dispersal of individuals contributes to long-term population persistence, yet requires a sufficient degree of landscape connectivity. To date, connectivity has mainly been investigated using least-cost analysis and circuit theory, two methods that make assumptions that are hardly applicable to dispersal. While these assumptions can be relaxed by explicitly simulating dispersal trajectories across the landscape, a unified approach for such simulations is lacking. Objectives: Here, we propose and apply a simple three-step approach to simulate dispersal and to assess connectivity using empirical GPS movement data and a set of habitat covariates. Methods: In step one of the proposed approach, we use integrated step-selection functions to fit a mechanistic movement model describing habitat and movement preferences of dispersing individuals. In step two, we apply the parameterized model to simulate dispersal across the study area. In step three, we derive three complementary connectivity maps; a heatmap highlighting frequently traversed areas, a betweenness map pinpointing dispersal corridors, and a map of inter-patch connectivity indicating the presence and intensity of functional links between habitat patches. We demonstrate the applicability of the proposed three-step approach in a case study in which we use GPS data collected on dispersing African wild dogs (Lycaon pictus) inhabiting northern Botswana. Results: Using step-selection functions we successfully parametrized a detailed dispersal model that described dispersing individuals' habitat and movement preferences, as well as potential interactions among the two. The model substantially outperformed a model that omitted such interactions and enabled us to simulate 80,000 dispersal trajectories across the study area. Conclusion: By explicitly simulating dispersal trajectories, our approach not only requires fewer unrealistic assumptions about dispersal, but also permits the calculation of multiple connectivity metrics that together provide a comprehensive view of landscape connectivity. In our case study, the three derived connectivity maps revealed several wild dog dispersal hotspots and corridors across the extent of our study area. Each map highlighted a different aspect of landscape connectivity, thus emphasizing their complementary nature. Overall, our case study demonstrates that a simulation-based approach offers a simple yet powerful alternative to traditional connectivity modeling techniques. It is therefore useful for a variety of applications in ecological, evolutionary, and conservation research. Supplementary Information: The online version contains supplementary material available at 10.1007/s10980-023-01602-4.

6.
Neuroimage ; 259: 119445, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35792290

RESUMEN

Neural mismatch responses have been proposed to rely on different mechanisms, including prediction error-related activity and adaptation to frequent stimuli. However, the hierarchical cortical structure of these mechanisms is unknown. To investigate this question, we recorded hemodynamic responses while participants (N = 54) listened to an auditory oddball sequence as well as a suited control condition. In addition to effects in sensory processing areas (Heschl's gyrus, superior temporal gyrus (STG)), we found several distinct clusters that indexed deviance processing in frontal and parietal regions (anterior cingulate cortex/supplementary motor area (ACC/SMA), inferior parietal lobule (IPL), anterior insula (AI), inferior frontal junction (IFJ)). Comparing responses to the control stimulus with the deviant and standard enabled us to delineate the contributions of prediction error- or adaptation-related brain activation, respectively. We observed significant effects of adaptation in Heschl's gyrus, STG and ACC/SMA, while prediction error-related activity was observed in STG, IPL, AI and IFJ. Additional dynamic causal modeling confirmed the superiority of a hierarchical processing structure compared to a flat structure. Thus, we found that while prediction-error related processes increased with the hierarchical level of the brain area, adaptation declined. This suggests that the relative contribution of different mechanisms in deviance processing varies across the cortical hierarchy.


Asunto(s)
Corteza Auditiva , Estimulación Acústica , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Encéfalo/fisiología , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética
7.
J Neural Eng ; 19(3)2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35366649

RESUMEN

Objective. To study the neural control of movement, it is often necessary to estimate how muscles are activated across a variety of behavioral conditions. One approach is to try extracting the underlying neural command signal to muscles by applying latent variable modeling methods to electromyographic (EMG) recordings. However, estimating the latent command signal that underlies muscle activation is challenging due to its complex relation with recorded EMG signals. Common approaches estimate each muscle's activation independently or require manual tuning of model hyperparameters to preserve behaviorally-relevant features.Approach. Here, we adapted AutoLFADS, a large-scale, unsupervised deep learning approach originally designed to de-noise cortical spiking data, to estimate muscle activation from multi-muscle EMG signals. AutoLFADS uses recurrent neural networks to model the spatial and temporal regularities that underlie multi-muscle activation.Main results. We first tested AutoLFADS on muscle activity from the rat hindlimb during locomotion and found that it dynamically adjusts its frequency response characteristics across different phases of behavior. The model produced single-trial estimates of muscle activation that improved prediction of joint kinematics as compared to low-pass or Bayesian filtering. We also applied AutoLFADS to monkey forearm muscle activity recorded during an isometric wrist force task. AutoLFADS uncovered previously uncharacterized high-frequency oscillations in the EMG that enhanced the correlation with measured force. The AutoLFADS-inferred estimates of muscle activation were also more closely correlated with simultaneously-recorded motor cortical activity than were other tested approaches.Significance.This method leverages dynamical systems modeling and artificial neural networks to provide estimates of muscle activation for multiple muscles. Ultimately, the approach can be used for further studies of multi-muscle coordination and its control by upstream brain areas, and for improving brain-machine interfaces that rely on myoelectric control signals.


Asunto(s)
Aprendizaje Profundo , Animales , Teorema de Bayes , Electromiografía/métodos , Locomoción , Músculo Esquelético/fisiología , Ratas
8.
Proc Biol Sci ; 289(1968): 20212514, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35135346

RESUMEN

In the past decade, the broadcast-spray application of antibiotics in US crops has increased exponentially in response to bacterial crop pathogens, but little is known about the sublethal impacts on beneficial organisms in agroecosystems. This is concerning given the key roles that microbes play in modulating insect fitness. A growing body of evidence suggests that insect gut microbiomes may play a role in learning and behaviour, which are key for the survival of pollinators and for their pollination efficacy, and which in turn could be disrupted by dietary antibiotic exposure. In the laboratory, we tested the effects of an upper-limit dietary exposure to streptomycin (200 ppm)-an antibiotic widely used to treat bacterial pathogens in crops-on bumblebee (Bombus impatiens) associative learning, foraging and stimulus avoidance behaviour. We used two operant conditioning assays: a free movement proboscis extension reflex protocol focused on short-term memory formation, and an automated radio-frequency identification tracking system focused on foraging. We show that upper-limit dietary streptomycin exposure slowed training, decreased foraging choice accuracy, increased avoidance behaviour and was associated with reduced foraging on sucrose-rewarding artificial flowers flowers. This work underscores the need to further study the impacts of antibiotic use on beneficial insects in agricultural systems.


Asunto(s)
Agricultura , Exposición Dietética , Estreptomicina , Animales , Antibacterianos/farmacología , Reacción de Prevención , Abejas , Productos Agrícolas , Flores , Polinización/fisiología , Estreptomicina/farmacología
9.
PLoS Comput Biol ; 18(1): e1009775, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041645

RESUMEN

Populations of cortical neurons respond to common input within a millisecond. Morphological features and active ion channel properties were suggested to contribute to this astonishing processing speed. Here we report an exhaustive study of ultrafast population coding for varying axon initial segment (AIS) location, soma size, and axonal current properties. In particular, we studied their impact on two experimentally observed features 1) precise action potential timing, manifested in a wide-bandwidth dynamic gain, and 2) high-frequency boost under slowly fluctuating correlated input. While the density of axonal channels and their distance from the soma had a very small impact on bandwidth, it could be moderately improved by increasing soma size. When the voltage sensitivity of axonal currents was increased we observed ultrafast coding and high-frequency boost. We conclude that these computationally relevant features are strongly dependent on axonal ion channels' voltage sensitivity, but not their number or exact location. We point out that ion channel properties, unlike dendrite size, can undergo rapid physiological modification, suggesting that the temporal accuracy of neuronal population encoding could be dynamically regulated. Our results are in line with recent experimental findings in AIS pathologies and establish a framework to study structure-function relations in AIS molecular design.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Modelos Neurológicos , Neuronas/fisiología , Biología Computacional , Canales Iónicos/metabolismo
10.
Hum Brain Mapp ; 43(1): 255-277, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32596977

RESUMEN

The ENIGMA group on Generalized Anxiety Disorder (ENIGMA-Anxiety/GAD) is part of a broader effort to investigate anxiety disorders using imaging and genetic data across multiple sites worldwide. The group is actively conducting a mega-analysis of a large number of brain structural scans. In this process, the group was confronted with many methodological challenges related to study planning and implementation, between-country transfer of subject-level data, quality control of a considerable amount of imaging data, and choices related to statistical methods and efficient use of resources. This report summarizes the background information and rationale for the various methodological decisions, as well as the approach taken to implement them. The goal is to document the approach and help guide other research groups working with large brain imaging data sets as they develop their own analytic pipelines for mega-analyses.


Asunto(s)
Trastornos de Ansiedad/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Interpretación Estadística de Datos , Metaanálisis como Asunto , Estudios Multicéntricos como Asunto , Neuroimagen , Humanos , Estudios Multicéntricos como Asunto/métodos , Estudios Multicéntricos como Asunto/normas , Neuroimagen/métodos , Neuroimagen/normas
11.
Brain Behav ; 12(1): e2413, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907666

RESUMEN

BACKGROUND: Posttraumatic stress disorder (PTSD) is associated with markers of accelerated aging. Estimates of brain age, compared to chronological age, may clarify the effects of PTSD on the brain and may inform treatment approaches targeting the neurobiology of aging in the context of PTSD. METHOD: Adult subjects (N = 2229; 56.2% male) aged 18-69 years (mean = 35.6, SD = 11.0) from 21 ENIGMA-PGC PTSD sites underwent T1-weighted brain structural magnetic resonance imaging, and PTSD assessment (PTSD+, n = 884). Previously trained voxel-wise (brainageR) and region-of-interest (BARACUS and PHOTON) machine learning pipelines were compared in a subset of control subjects (n = 386). Linear mixed effects models were conducted in the full sample (those with and without PTSD) to examine the effect of PTSD on brain predicted age difference (brain PAD; brain age - chronological age) controlling for chronological age, sex, and scan site. RESULTS: BrainageR most accurately predicted brain age in a subset (n = 386) of controls (brainageR: ICC = 0.71, R = 0.72, MAE = 5.68; PHOTON: ICC = 0.61, R = 0.62, MAE = 6.37; BARACUS: ICC = 0.47, R = 0.64, MAE = 8.80). Using brainageR, a three-way interaction revealed that young males with PTSD exhibited higher brain PAD relative to male controls in young and old age groups; old males with PTSD exhibited lower brain PAD compared to male controls of all ages. DISCUSSION: Differential impact of PTSD on brain PAD in younger versus older males may indicate a critical window when PTSD impacts brain aging, followed by age-related brain changes that are consonant with individuals without PTSD. Future longitudinal research is warranted to understand how PTSD impacts brain aging across the lifespan.


Asunto(s)
Trastornos por Estrés Postraumático , Adolescente , Adulto , Anciano , Envejecimiento , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Femenino , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Trastornos por Estrés Postraumático/diagnóstico por imagen , Adulto Joven
12.
Transl Psychiatry ; 11(1): 502, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599145

RESUMEN

The goal of this study was to compare brain structure between individuals with generalized anxiety disorder (GAD) and healthy controls. Previous studies have generated inconsistent findings, possibly due to small sample sizes, or clinical/analytic heterogeneity. To address these concerns, we combined data from 28 research sites worldwide through the ENIGMA-Anxiety Working Group, using a single, pre-registered mega-analysis. Structural magnetic resonance imaging data from children and adults (5-90 years) were processed using FreeSurfer. The main analysis included the regional and vertex-wise cortical thickness, cortical surface area, and subcortical volume as dependent variables, and GAD, age, age-squared, sex, and their interactions as independent variables. Nuisance variables included IQ, years of education, medication use, comorbidities, and global brain measures. The main analysis (1020 individuals with GAD and 2999 healthy controls) included random slopes per site and random intercepts per scanner. A secondary analysis (1112 individuals with GAD and 3282 healthy controls) included fixed slopes and random intercepts per scanner with the same variables. The main analysis showed no effect of GAD on brain structure, nor interactions involving GAD, age, or sex. The secondary analysis showed increased volume in the right ventral diencephalon in male individuals with GAD compared to male healthy controls, whereas female individuals with GAD did not differ from female healthy controls. This mega-analysis combining worldwide data showed that differences in brain structure related to GAD are small, possibly reflecting heterogeneity or those structural alterations are not a major component of its pathophysiology.


Asunto(s)
Trastornos de Ansiedad , Encéfalo , Adulto , Ansiedad , Trastornos de Ansiedad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Niño , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
13.
J Neurosci ; 41(37): 7864-7875, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34301829

RESUMEN

Current theories of visual consciousness disagree about whether it emerges during early stages of processing in sensory brain regions or later when a widespread frontoparietal network becomes involved. Moreover, disentangling conscious perception from task-related postperceptual processes (e.g., report) and integrating results across different neuroscientific methods remain ongoing challenges. The present study addressed these problems using simultaneous EEG-fMRI and a specific inattentional blindness paradigm with three physically identical phases in female and male human participants. In phase 1, participants performed a distractor task during which line drawings of faces and control stimuli were presented centrally. While some participants spontaneously noticed the faces in phase 1, others remained inattentionally blind. In phase 2, all participants were made aware of the task-irrelevant faces but continued the distractor task. In phase 3, the faces became task-relevant. Bayesian analysis of brain responses demonstrated that conscious face perception was most strongly associated with activation in fusiform gyrus (fMRI) as well as the N170 and visual awareness negativity (EEG). Smaller awareness effects were revealed in the occipital and prefrontal cortex (fMRI). Task-relevant face processing, on the other hand, led to strong, extensive activation of occipitotemporal, frontoparietal, and attentional networks (fMRI). In EEG, it enhanced early negativities and elicited a pronounced P3b component. Overall, we provide evidence that conscious visual perception is linked with early processing in stimulus-specific sensory brain areas but may additionally involve prefrontal cortex. In contrast, the strong activation of widespread brain networks and the P3b are more likely associated with task-related processes.SIGNIFICANCE STATEMENT How does our brain generate visual consciousness-the subjective experience of what it is like to see, for example, a face? To date, it is hotly debated whether it emerges early in sensory brain regions or later when a widespread frontoparietal network is activated. Here, we use simultaneous fMRI and EEG for high spatial and temporal resolution and demonstrate that conscious face perception is predominantly linked to early and occipitotemporal processes, but also prefrontal activity. Task-related processes (e.g., decision-making), on the other hand, elicit brain-wide activations including late and strong frontoparietal activity. These findings challenge numerous previous studies and highlight the importance of investigating the neural correlates of consciousness in the absence of task relevance.


Asunto(s)
Encéfalo/fisiología , Estado de Conciencia/fisiología , Reconocimiento Facial/fisiología , Adulto , Atención/fisiología , Encéfalo/diagnóstico por imagen , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Percepción Visual/fisiología , Adulto Joven
14.
PLoS Comput Biol ; 17(3): e1008740, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33667218

RESUMEN

Biochemical processes in cells are governed by complex networks of many chemical species interacting stochastically in diverse ways and on different time scales. Constructing microscopically accurate models of such networks is often infeasible. Instead, here we propose a systematic framework for building phenomenological models of such networks from experimental data, focusing on accurately approximating the time it takes to complete the process, the First Passage (FP) time. Our phenomenological models are mixtures of Gamma distributions, which have a natural biophysical interpretation. The complexity of the models is adapted automatically to account for the amount of available data and its temporal resolution. The framework can be used for predicting behavior of FP systems under varying external conditions. To demonstrate the utility of the approach, we build models for the distribution of inter-spike intervals of a morphologically complex neuron, a Purkinje cell, from experimental and simulated data. We demonstrate that the developed models can not only fit the data, but also make nontrivial predictions. We demonstrate that our coarse-grained models provide constraints on more mechanistically accurate models of the involved phenomena.


Asunto(s)
Modelos Biológicos , Animales , Biología Computacional , Células de Purkinje
15.
Mol Psychiatry ; 26(8): 4315-4330, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31857689

RESUMEN

A growing number of studies have examined alterations in white matter organization in people with posttraumatic stress disorder (PTSD) using diffusion MRI (dMRI), but the results have been mixed which may be partially due to relatively small sample sizes among studies. Altered structural connectivity may be both a neurobiological vulnerability for, and a result of, PTSD. In an effort to find reliable effects, we present a multi-cohort analysis of dMRI metrics across 3047 individuals from 28 cohorts currently participating in the PGC-ENIGMA PTSD working group (a joint partnership between the Psychiatric Genomics Consortium and the Enhancing NeuroImaging Genetics through Meta-Analysis consortium). Comparing regional white matter metrics across the full brain in 1426 individuals with PTSD and 1621 controls (2174 males/873 females) between ages 18-83, 92% of whom were trauma-exposed, we report associations between PTSD and disrupted white matter organization measured by lower fractional anisotropy (FA) in the tapetum region of the corpus callosum (Cohen's d = -0.11, p = 0.0055). The tapetum connects the left and right hippocampus, for which structure and function have been consistently implicated in PTSD. Results were consistent even after accounting for the effects of multiple potentially confounding variables: childhood trauma exposure, comorbid depression, history of traumatic brain injury, current alcohol abuse or dependence, and current use of psychotropic medications. Our results show that PTSD may be associated with alterations in the broader hippocampal network.


Asunto(s)
Trastornos por Estrés Postraumático , Sustancia Blanca , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anisotropía , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos por Estrés Postraumático/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
16.
Hum Brain Mapp ; 42(3): 824-836, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33155747

RESUMEN

In a previous study, we investigated the resting-state fMRI effective connectivity (EC) between the bed nucleus of the stria terminalis (BNST) and the laterobasal (LB), centromedial (CM), and superficial (SF) amygdala. We found strong negative EC from all amygdala nuclei to the BNST, while the BNST showed positive EC to the amygdala. However, the validity of these findings remains unclear, since a reproduction in different samples has not been done. Moreover, the association of EC with measures of anxiety offers deeper insight, due to the known role of the BNST and amygdala in fear and anxiety. Here, we aimed to reproduce our previous results in three additional samples. We used spectral Dynamic Causal Modeling to estimate the EC between the BNST, the LB, CM, and SF, and its association with two measures of self-reported anxiety. Our results revealed consistency over samples with regard to the negative EC from the amygdala nuclei to the BNST, while the positive EC from BNST to the amygdala was also found, but weaker and more heterogenic. Moreover, we found the BNST-BNST EC showing a positive and the CM-BNST EC, showing a negative association with anxiety. Our study suggests a reproducible pattern of negative EC from the amygdala to the BNST along with weaker positive EC from the BNST to the amygdala. Moreover, less BNST self-inhibition and more inhibitory influence from the CM to the BNST seems to be a pattern of EC that is related to higher anxiety.


Asunto(s)
Amígdala del Cerebelo/fisiología , Ansiedad/fisiopatología , Conectoma/métodos , Red Nerviosa/fisiología , Núcleos Septales/fisiología , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Ansiedad/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Reproducibilidad de los Resultados , Núcleos Septales/diagnóstico por imagen , Adulto Joven
17.
Mol Psychiatry ; 26(8): 4331-4343, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33288872

RESUMEN

Studies of posttraumatic stress disorder (PTSD) report volume abnormalities in multiple regions of the cerebral cortex. However, findings for many regions, particularly regions outside commonly studied emotion-related prefrontal, insular, and limbic regions, are inconsistent and tentative. Also, few studies address the possibility that PTSD abnormalities may be confounded by comorbid depression. A mega-analysis investigating all cortical regions in a large sample of PTSD and control subjects can potentially provide new insight into these issues. Given this perspective, our group aggregated regional volumes data of 68 cortical regions across both hemispheres from 1379 PTSD patients to 2192 controls without PTSD after data were processed by 32 international laboratories using ENIGMA standardized procedures. We examined whether regional cortical volumes were different in PTSD vs. controls, were associated with posttraumatic stress symptom (PTSS) severity, or were affected by comorbid depression. Volumes of left and right lateral orbitofrontal gyri (LOFG), left superior temporal gyrus, and right insular, lingual and superior parietal gyri were significantly smaller, on average, in PTSD patients than controls (standardized coefficients = -0.111 to -0.068, FDR corrected P values < 0.039) and were significantly negatively correlated with PTSS severity. After adjusting for depression symptoms, the PTSD findings in left and right LOFG remained significant. These findings indicate that cortical volumes in PTSD patients are smaller in prefrontal regulatory regions, as well as in broader emotion and sensory processing cortical regions.


Asunto(s)
Trastornos por Estrés Postraumático , Corteza Cerebral/diagnóstico por imagen , Genómica , Humanos , Imagen por Resonancia Magnética , Trastornos por Estrés Postraumático/diagnóstico por imagen , Trastornos por Estrés Postraumático/genética , Lóbulo Temporal
18.
Neuroimage Clin ; 22: 101735, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30878610

RESUMEN

Anticipation of potentially threatening social situations is a key process in social anxiety disorder (SAD). In other anxiety disorders, recent research of neural correlates of anticipation of temporally unpredictable threat suggests a temporally dissociable involvement of amygdala and bed nucleus of the stria terminalis (BNST) with phasic amygdala responses and sustained BNST activation. However, the temporal profile of amygdala and BNST responses during temporal unpredictability of threat has not been investigated in patients suffering from SAD. We used functional magnetic resonance imaging (fMRI) to investigate neural activation in the central nucleus of the amygdala (CeA) and the BNST during anticipation of temporally unpredictable aversive (video camera observation) relative to neutral (no camera observation) events in SAD patients compared to healthy controls (HC). For the analysis of fMRI data, we applied two regressors (phasic/sustained) within the same model to detect temporally dissociable brain responses. The aversive condition induced increased anxiety in patients compared to HC. SAD patients compared to HC showed increased phasic activation in the CeA and the BNST for anticipation of aversive relative to neutral events. SAD patients as well as HC showed sustained activity alterations in the BNST for aversive relative to neutral anticipation. No differential activity during sustained threat anticipation in SAD patients compared to HC was found. Taken together, our study reveals both CeA and BNST involvement during threat anticipation in SAD patients. The present results point towards potentially SAD-specific threat processing marked by elevated phasic but not sustained CeA and BNST responses when compared to HC.


Asunto(s)
Amígdala del Cerebelo/diagnóstico por imagen , Anticipación Psicológica/fisiología , Fobia Social/diagnóstico por imagen , Estimulación Luminosa/métodos , Núcleos Septales/diagnóstico por imagen , Conducta Social , Adulto , Amígdala del Cerebelo/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Fobia Social/metabolismo , Fobia Social/psicología , Núcleos Septales/metabolismo , Factores de Tiempo , Adulto Joven
19.
Hum Brain Mapp ; 40(9): 2723-2735, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30829454

RESUMEN

The bed nucleus of the stria terminalis (BNST) and the laterobasal nucleus (LB), centromedial nucleus (CM), and superficial nucleus (SF) of the amygdala form an interconnected dynamical system, whose combined activity mediates a variety of behavioral and autonomic responses in reaction to homeostatic challenges. Although previous research provided deeper insight into the structural and functional connections between these nuclei, studies investigating their resting-state functional magnetic resonance imaging (fMRI) connectivity were solely based on undirected connectivity measures. Here, we used high-quality data of 391 subjects from the Human Connectome Project to estimate the effective connectivity (EC) between the BNST, the LB, CM, and SF through spectral dynamic causal modeling, the relation of the EC estimates with age and sex as well as their stability over time. Our results reveal a time-stable asymmetric EC structure with positive EC between all amygdala nuclei, which strongly inhibited the BNST while the BNST exerted positive influence onto all amygdala nuclei. Simulation of the impulse response of the estimated system showed that this EC structure shapes partially antagonistic (out of phase) activity flow between the BNST and amygdala nuclei. Moreover, the BNST-LB and BNST-CM EC parameters were less negative in males. In conclusion, our data points toward partially separated information processing between BNST and amygdala nuclei in the resting-state.


Asunto(s)
Amígdala del Cerebelo/fisiología , Conectoma/métodos , Red Nerviosa/fisiología , Núcleos Septales/fisiología , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Núcleos Septales/diagnóstico por imagen , Adulto Joven
20.
Sci Rep ; 9(1): 2415, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787382

RESUMEN

Despite considerable effort, the neural correlates of altered threat-related processing in panic disorder (PD) remain inconclusive. Mental imagery of disorder-specific situations proved to be a powerful tool to investigate dysfunctional threat processing in anxiety disorders. The current functional magnetic resonance imaging (fMRI) study aimed at investigating brain activation in PD patients during disorder-related script-driven imagery. Seventeen PD patients and seventeen healthy controls (HC) were exposed to newly developed disorder-related and neutral narrative scripts while brain activation was measured with fMRI. Participants were encouraged to imagine the narrative scripts as vividly as possible and they rated their script-induced emotional states after the scanning session. PD patients rated disorder-related scripts as more arousing, unpleasant and anxiety-inducing as compared to HC. Patients relative to HC showed elevated activity in the right amygdala and the brainstem as well as decreased activity in the rostral anterior cingulate cortex, and the medial and lateral prefrontal cortex to disorder-related vs. neutral scripts. The results suggest altered amygdala/ brainstem and prefrontal cortex engagement and point towards the recruitment of brain networks with opposed activation patterns in PD patients during script-driven imagery.


Asunto(s)
Trastornos de Ansiedad/fisiopatología , Encéfalo/fisiopatología , Miedo/fisiología , Trastorno de Pánico/fisiopatología , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiopatología , Trastornos de Ansiedad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Emociones/fisiología , Miedo/psicología , Femenino , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiopatología , Humanos , Imágenes en Psicoterapia/métodos , Imaginación/fisiología , Imagen por Resonancia Magnética , Masculino , Trastorno de Pánico/diagnóstico por imagen , Proyectos Piloto , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiopatología , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...