Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(5): e17299, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700905

RESUMEN

While climate change has been shown to impact several life-history traits of wild-living animal populations, little is known about its effects on dispersal and connectivity. Here, we capitalize on the highly variable flooding regime of the Okavango Delta to investigate the impacts of changing environmental conditions on the dispersal and connectivity of the endangered African wild dog (Lycaon pictus). Based on remote sensed flood extents observed over 20 years, we derive two extreme flood scenarios: a minimum and a maximum flood extent, representative of very dry and very wet environmental periods. These conditions are akin to those anticipated under increased climatic variability, as it is expected under climate change. Using a movement model parameterized with GPS data from dispersing individuals, we simulate 12,000 individual dispersal trajectories across the ecosystem under both scenarios and investigate patterns of connectivity. Across the entire ecosystem, surface water coverage during maximum flood extent reduces dispersal success (i.e., the propensity of individuals to disperse between adjacent subpopulations) by 12% and increases dispersal durations by 17%. Locally, however, dispersal success diminishes by as much as 78%. Depending on the flood extent, alternative dispersal corridors emerge, some of which in the immediate vicinity of human-dominated landscapes. Notably, under maximum flood extent, the number of dispersing trajectories moving into human-dominated landscapes decreases by 41% at the Okavango Delta's inflow, but increases by 126% at the Delta's distal end. This may drive the amplification of human-wildlife conflict. While predicting the impacts of climate change on environmental conditions on the ground remains challenging, our results highlight that environmental change may have significant consequences for dispersal patterns and connectivity, and ultimately, population viability. Acknowledging and anticipating such impacts will be key to effective conservation strategies and to preserve vital dispersal corridors in light of climate change and other human-related landscape alterations.


Asunto(s)
Distribución Animal , Cambio Climático , Ecosistema , Inundaciones , Animales , Canidae/fisiología , Especies en Peligro de Extinción
2.
Mov Ecol ; 12(1): 37, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725084

RESUMEN

Integrated step-selection analyses (iSSAs) are versatile and powerful frameworks for studying habitat and movement preferences of tracked animals. iSSAs utilize integrated step-selection functions (iSSFs) to model movements in discrete time, and thus, require animal location data that are regularly spaced in time. However, many real-world datasets are incomplete due to tracking devices failing to locate an individual at one or more scheduled times, leading to slight irregularities in the duration between consecutive animal locations. To address this issue, researchers typically only consider bursts of regular data (i.e., sequences of locations that are equally spaced in time), thereby reducing the number of observations used to model movement and habitat selection. We reassess this practice and explore four alternative approaches that account for temporal irregularity resulting from missing data. Using a simulation study, we compare these alternatives to a baseline approach where temporal irregularity is ignored and demonstrate the potential improvements in model performance that can be gained by leveraging these additional data. We also showcase these benefits using a case study on a spotted hyena (Crocuta crocuta).

3.
Landsc Ecol ; 38(4): 981-998, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36941928

RESUMEN

Context: Dispersal of individuals contributes to long-term population persistence, yet requires a sufficient degree of landscape connectivity. To date, connectivity has mainly been investigated using least-cost analysis and circuit theory, two methods that make assumptions that are hardly applicable to dispersal. While these assumptions can be relaxed by explicitly simulating dispersal trajectories across the landscape, a unified approach for such simulations is lacking. Objectives: Here, we propose and apply a simple three-step approach to simulate dispersal and to assess connectivity using empirical GPS movement data and a set of habitat covariates. Methods: In step one of the proposed approach, we use integrated step-selection functions to fit a mechanistic movement model describing habitat and movement preferences of dispersing individuals. In step two, we apply the parameterized model to simulate dispersal across the study area. In step three, we derive three complementary connectivity maps; a heatmap highlighting frequently traversed areas, a betweenness map pinpointing dispersal corridors, and a map of inter-patch connectivity indicating the presence and intensity of functional links between habitat patches. We demonstrate the applicability of the proposed three-step approach in a case study in which we use GPS data collected on dispersing African wild dogs (Lycaon pictus) inhabiting northern Botswana. Results: Using step-selection functions we successfully parametrized a detailed dispersal model that described dispersing individuals' habitat and movement preferences, as well as potential interactions among the two. The model substantially outperformed a model that omitted such interactions and enabled us to simulate 80,000 dispersal trajectories across the study area. Conclusion: By explicitly simulating dispersal trajectories, our approach not only requires fewer unrealistic assumptions about dispersal, but also permits the calculation of multiple connectivity metrics that together provide a comprehensive view of landscape connectivity. In our case study, the three derived connectivity maps revealed several wild dog dispersal hotspots and corridors across the extent of our study area. Each map highlighted a different aspect of landscape connectivity, thus emphasizing their complementary nature. Overall, our case study demonstrates that a simulation-based approach offers a simple yet powerful alternative to traditional connectivity modeling techniques. It is therefore useful for a variety of applications in ecological, evolutionary, and conservation research. Supplementary Information: The online version contains supplementary material available at 10.1007/s10980-023-01602-4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...