Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 10(1): 220500, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36704255

RESUMEN

Weddell seals (Leptonychotes weddellii) are important predators in the Southern Ocean and are among the best-studied pinnipeds on Earth, yet much still needs to be learned about their year-round movements and foraging behaviour. Using biologgers, we tagged 62 post-moult Weddell seals in McMurdo Sound and vicinity between 2010 and 2012. Generalized additive mixed models were used to (i) explain and predict the probability of seal presence and foraging behaviour from eight environmental variables, and (ii) examine foraging behaviour in relation to dive metrics. Foraging probability was highest in winter and lowest in summer, and foraging occurred mostly in the water column or just above the bottom; across all seasons, seals preferentially exploited the shallow banks and deeper troughs of the Ross Sea, the latter providing a pathway for Circumpolar Deep Water to flow onto the shelf. In addition, the probability of Weddell seal occurrence and foraging increased with increasing bathymetric slope and where water depth was typically less than 600 m. Although the probability of occurrence was higher closer to the shelf break, foraging was higher in areas closer to shore and over banks. This study highlights the importance of overwinter foraging for recouping body mass lost during the previous summer.

2.
Harmful Algae ; 107: 102064, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34456021

RESUMEN

A time-dependent model of Margalefidinium polykrikoides, a mixotrophic dinoflagellate, cell growth was implemented to assess controls on blooms in the Lafayette River, a shallow, tidal sub-tributary of the lower Chesapeake Bay. Simulated cell growth included autotrophic and heterotrophic contributions. Autotrophic cell growth with no nutrient limitation resulted in a bloom but produced chlorophyll concentrations that were 45% less than observed bloom concentrations (~80 mg Chl m-3 vs. 145 mg Chl m-3) and a bloom progression that did not match observations. Excystment (cyst germination) was important for bloom initiation, but did not influence the development of algal biomass or bloom duration. Encystment (cyst formation) resulted in small losses of biomass throughout the bloom but similarly, did not influence M. polykrikoides cell density or the duration of blooms. In contrast, the degree of heterotrophy significantly impacted cell densities achieved and bloom duration. When heterotrophy contributed a constant 30% to cell growth, and dissolved inorganic nitrogen was not limiting, simulated chlorophyll concentrations were within those observed during blooms (maximum ~140 mg Chl m-3). However, nitrogen limitation quenched the maximum chlorophyll concentration by a factor of three. Specifying heterotrophy as an increasing function of nutrient limitation, allowing it to contribute up to 50% and 70% of total growth, resulted in simulated maximum chlorophyll concentrations of 90 mg Chl m-3 and 180 mg Chl m-3, respectively. This suggested that blooms of M. polykrikoides in the Lafayette River are fortified and maintained by substantial heterotrophic nutritional inputs. The timing and progression of the simulated bloom was controlled by the temperature range, 23 °C to 28 °C, that supports M. polykrikoides growth. Temperature increases of 0.5 °C and 1.0 °C, consistent with current warming trends in the lower Chesapeake Bay due to climate change, shifted the timing of bloom initiation to be earlier and extended the duration of blooms; maximum bloom magnitude was reduced by 50% and 65%, respectively. Warming by 5 °C suppressed the summer bloom. The simulations suggested that the timing of M. polykrikoides blooms in the Lafayette River is controlled by temperature and the bloom magnitude is determined by trade-offs between the severity of nutrient limitation and the relative contribution of mixotrophy to cell growth.


Asunto(s)
Dinoflagelados , Floraciones de Algas Nocivas , Bahías , Ríos , Temperatura
4.
J Invertebr Pathol ; 131: 212-25, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26239016

RESUMEN

Disease effects on host population dynamics and the transmission of pathogens between hosts are two important challenges for understanding how epizootics wax and wane and how disease influences host population dynamics. For the management of marine shellfish resources, marine diseases pose additional challenges in early intervention after the appearance of disease, management of the diseased population to limit a decline in host abundance, and application of measures to restrain that decline once it occurs. Mathematical models provide one approach for quantifying these effects and addressing the competing goals of managing the diseased population versus managing the disease. The majority of models for molluscan diseases fall into three categories distinguished by these competing goals. (1) Models that consider disease effects on the host population tend to focus on pathogen proliferation within the host. Many of the well-known molluscan diseases are pandemic, in that they routinely reach high prevalence rapidly over large geographic expanses, are characterized by transmission that does not depend upon a local source, and exert a significant influence on host population dynamics. Models focused on disease proliferation examine the influence of environmental change on host population metrics and provide a basis to better manage diseased stocks. Such models are readily adapted to questions of fishery management and habitat restoration. (2) Transmission models are designed to understand the mechanisms triggering epizootics, identify factors impeding epizootic development, and evaluate controls on the rate of disease spread over the host's range. Transmission models have been used extensively to study terrestrial diseases, yet little attention has been given to their potential for understanding the epidemiology of marine molluscan diseases. For management of diseases of wild stocks, transmission models open up a range of options, including the application of area management, manipulation of host abundance, and use of scavengers and filter feeders to limit the concentration of infective particles. (3) The details of host population processes and pathogen transmission dynamics are blended in models that evaluate the effects of natural selection and/or genetic modification in developing disease resistance in the host population. Application of gene-based models to marine diseases is only now beginning and represents a promising approach that may provide a mechanistic basis for managing marine diseases and their host populations. Overall disease models remain both uncommon and underutilized in addressing the needs for managing molluscan diseases and their host populations.


Asunto(s)
Interacciones Huésped-Parásitos , Moluscos , Mariscos , Animales , Modelos Teóricos , Dinámica Poblacional/tendencias
5.
J Geophys Res Biogeosci ; 120(8): 1666-1695, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27668137

RESUMEN

The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land-estuarine-ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within-estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite-derived data, and a simulation using environmental conditions for 2001-2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 109 g N yr-1) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 109 g N yr-1) and buried (46 × 109 g N yr-1) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 109 g N yr-1) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50-60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf.

6.
Glob Chang Biol ; 20(10): 3004-25, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24802817

RESUMEN

Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.


Asunto(s)
Organismos Acuáticos , Cambio Climático , Cubierta de Hielo , Regiones Antárticas , Biota , Ecosistema , Océanos y Mares , Movimientos del Agua , Viento
7.
Ann Rev Mar Sci ; 6: 249-77, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23808894

RESUMEN

Infectious diseases are common in marine environments, but the effects of a changing climate on marine pathogens are not well understood. Here we review current knowledge about how the climate drives host-pathogen interactions and infectious disease outbreaks. Climate-related impacts on marine diseases are being documented in corals, shellfish, finfish, and humans; these impacts are less clearly linked for other organisms. Oceans and people are inextricably linked, and marine diseases can both directly and indirectly affect human health, livelihoods, and well-being. We recommend an adaptive management approach to better increase the resilience of ocean systems vulnerable to marine diseases in a changing climate. Land-based management methods of quarantining, culling, and vaccinating are not successful in the ocean; therefore, forecasting conditions that lead to outbreaks and designing tools/approaches to influence these conditions may be the best way to manage marine disease.


Asunto(s)
Enfermedades Transmisibles/veterinaria , Enfermedades Transmitidas por los Alimentos/epidemiología , Animales , Cambio Climático , Humanos
8.
Ann Rev Mar Sci ; 3: 93-122, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21329200

RESUMEN

Continental margin systems are important contributors to global nutrient and carbon budgets. Effort is needed to quantify this contribution and how it will be modified under changing patterns of climate and land use. Coupled models will be used to provide projections of future states of continental margin systems. Thus, it is appropriate to consider the limitations that impede the development of realistic models. Here, we provide an overview of the current state of modeling carbon cycling on continental margins as well as the processes and issues that provide the next challenges to such models. Our overview is done within the context of a coupled circulation-biogeochemical model developed for the northeastern North American continental shelf region. Particular choices of forcing and initial fields and process parameterizations are used to illustrate the consequences for simulated distributions, as revealed by comparisons to observations using quantitative statistical metrics.


Asunto(s)
Ciclo del Carbono , Carbono/química , Sedimentos Geológicos , Modelos Teóricos , Oceanografía , Océanos y Mares
9.
J Theor Biol ; 271(1): 27-43, 2011 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-21056580

RESUMEN

Crassostrea oysters are protandrous hermaphrodites. Sex is thought to be determined by a single gene with a dominant male allele M and a recessive protandrous allele F, such that FF animals are protandrous and MF animals are permanent males. We investigate the possibility that a reduction in generation time, brought about for example by disease, might jeopardize retention of the M allele. Simulations show that MF males have a significantly lessened lifetime fecundity when generation time declines. The allele frequency of the M allele declines and eventually the M allele is lost. The probability of loss is modulated by population abundance. As abundance increases, the probability of M allele loss declines. Simulations suggest that stabilization of the female-to-male ratio when generation time is long is the dominant function of the M allele. As generation time shortens, the raison d'être for the M allele also fades as mortality usurps the stabilizing role. Disease and exploitation have shortened oyster generation time: one consequence may be to jeopardize retention of the M allele. Two alternative genetic bases for protandry also provide stable sex ratios when generation time is long; an F-dominant protandric allele and protandry restricted to the MF heterozygote. In both cases, simulations show that FF individuals become rare in the population at high abundance and/or long generation time. Protandry restricted to the MF heterozygote maintains sex ratio stability over a wider range of generation times and abundances than the alternatives, suggesting that sex determination based on a male-dominant allele (MM/MF) may not be the optimal solution to the genetic basis for protandry in Crassostrea.


Asunto(s)
Modelos Genéticos , Ostreidae/genética , Procesos de Determinación del Sexo/genética , Animales , Femenino , Frecuencia de los Genes , Masculino , Densidad de Población , Dinámica Poblacional , Razón de Masculinidad
10.
Environ Manage ; 31(1): 100-21, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12447579

RESUMEN

A hydrodynamic-oyster population model was developed to assess the effect of changes in freshwater inflow on oyster populations in Galveston Bay, Texas, USA. The population model includes the effects of environmental conditions, predators, and the oyster parasite, Perkinsus marinus, on oyster populations. The hydrodynamic model includes the effects of wind stress, river runoff, tides, and oceanic exchange on the circulation of the bay. Simulations were run for low, mean, and high freshwater inflow conditions under the present (1993) hydrology and predicted hydrologies for 2024 and 2049 that include both changes in total freshwater inflow and diversions of freshwater from one primary drainage basin to another. Freshwater diversion to supply the Houston metropolitan area is predicted to negatively impact oyster production in Galveston Bay. Fecundity and larval survivorship both decline. Mortality from Perkinsus marinus increases, but to a lesser extent. A larger negative impact in 2049 relative to 2024 originates from the larger drop in fecundity under that hydrology. Changes in recruitment and mortality, resulting in lowered oyster abundance, occur because the bay volume available for mixing freshwater input from the San Jacinto and Buffalo Bayou drainage basins that drain metropolitan Houston is small in comparison to the volume of Trinity Bay that presently receives the bulk of the bay's freshwater inflow. A smaller volume for mixing results in salinities that decline more rapidly and to a greater extent under conditions of high freshwater discharge.Thus, the decline in oyster abundance results from a disequilibrium between geography and salinity brought about by freshwater diversion. Although the bay hydrology shifts, available hard substrate does not. The simulations stress the fact that it is not just the well-appreciated reduction in freshwater inflow that can result in decreased oyster production. Changing the location of freshwater inflow can also significantly impact the bay environment, even if the total amount of freshwater inflow does not change.


Asunto(s)
Modelos Teóricos , Ostreidae , Movimientos del Agua , Abastecimiento de Agua , Animales , Femenino , Larva , Masculino , Mortalidad , Dinámica Poblacional , Sobrevida , Texas , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...