Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873953

RESUMEN

Allotetraploid white clover (Trifolium repens) formed during the last glaciation through hybridisation of two European diploid progenitors from restricted niches: one coastal, the other alpine. Here, we examine which hybridisation-derived molecular events may have underpinned white clover's postglacial niche expansion. We compared the transcriptomic frost responses of white clovers (an inbred line and an alpine-adapted ecotype), extant descendants of its progenitor species and a resynthesised white clover neopolyploid to identify genes that were exclusively frost-induced in the alpine progenitor and its derived subgenomes. From these analyses we identified galactinol synthase, the rate-limiting enzyme in biosynthesis of the cryoprotectant raffinose, and found that the extant descendants of the alpine progenitor as well as the neopolyploid white clover rapidly accumulated significantly more galactinol and raffinose than the coastal progenitor under cold stress. The frost-induced galactinol synthase expression and rapid raffinose accumulation derived from the alpine progenitor likely provided an advantage during early postglacial colonisation for white clover compared to its coastal progenitor.

2.
Front Plant Sci ; 14: 1195058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426971

RESUMEN

Red clover (Trifolium pratense L.), a key perennial pastoral species used globally, can strengthen pastural mixes to withstand increasingly disruptive weather patterns from climate change. Breeding selections can be refined for this purpose by obtaining an in-depth understanding of key functional traits. A replicated randomized complete block glasshouse pot trial was used to observe trait responses critical to plant performance under control (15% VMC), water deficit (5% VMC) and waterlogged conditions (50% VMC) in seven red clover populations and compared against white clover. Twelve morphological and physiological traits were identified as key contributors to the different plant coping mechanisms displayed. Under water deficit, the levels of all aboveground morphological traits decreased, highlighted by a 41% decrease in total dry matter and 50% decreases in both leaf number and leaf thickness compared to the control treatment. An increase in root to shoot ratio indicated a shift to prioritizing root maintenance by sacrificing shoot growth, a trait attributed to plant water deficit tolerance. Under waterlogging, a reduction in photosynthetic activity among red clover populations reduced several morphological traits including a 30% decrease in root dry mass and total dry matter, and a 34% decrease in leaf number. The importance of root morphology for waterlogging was highlighted with low performance of red clover: there was an 83% decrease in root dry mass compared to white clover which was able to maintain root dry mass and therefore plant performance. This study highlights the importance of germplasm evaluation across water stress extremes to identify traits for future breeding programs.

3.
Front Plant Sci ; 13: 953400, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212301

RESUMEN

White clover (Trifolium repens) is integral to mixed pastures in New Zealand and temperate agriculture globally. It provides quality feed and a sustainable source of plant-available nitrogen (N) via N-fixation through symbiosis with soil-dwelling Rhizobium bacteria. Improvement of N-fixation in white clover is a route to enhancing sustainability of temperate pasture production. Focussing on seedling growth critical for crop establishment and performance, a population of 120 half-sibling white clover families was assessed with either N-supplementation or N-fixation via inoculation with a commercial Rhizobium strain (TA1). Quantitative genetic analysis identified significant (p < 0.05) family additive genetic variance for Shoot and Root Dry Matter (DM) and Symbiotic Potential (SP), and Root to Shoot ratio. Estimated narrow-sense heritabilities for above-ground symbiotic traits were moderate (0.24-0.33), and the strong (r ≥ 0.97) genetic correlation between Shoot and Root DM indicated strong pleiotropy or close linkage. The moderate (r = 0.47) phenotypic correlation between Shoot DM under symbiosis vs. under N-supplementation suggested plant growth with mineral-N was not a strong predictor of symbiotic performance. At 5% among-family selection pressure, predicted genetic gains per selection cycle of 19 and 17% for symbiotic traits Shoot DM and Shoot SP, respectively, highlighted opportunities for improved early seedling establishment and growth under symbiosis. Single and multi-trait selection methods, including a Smith-Hazel index focussing on an ideotype of high Shoot DM and Shoot SP, showed commonality of top-ranked families among traits. This study provides a platform for proof-of-concept crosses to breed for enhanced seedling growth under Rhizobium symbiosis and is informative for other legume crops.

4.
Front Plant Sci ; 12: 653191, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220882

RESUMEN

Trifolium is the most used pastoral legume genus in temperate grassland systems, and a common feature in meadows and open space areas in cities and parks. Breeding of Trifolium spp. for pastoral production has been going on for over a century. However, the breeding targets have changed over the decades in response to different environmental and production pressures. Relatively small gains have been made in Trifolium breeding progress. Trifolium breeding programmes aim to maintain a broad genetic base to maximise variation. New Zealand is a global hub in Trifolium breeding, utilising exotic germplasm imported by the Margot Forde Germplasm Centre. This article describes the history of Trifolium breeding in New Zealand as well as the role and past successes of utilising genebanks in forage breeding. The impact of germplasm characterisation and evaluation in breeding programmes is also discussed. The history and challenges of Trifolium breeding and its effect on genetic gain can be used to inform future pre-breeding decisions in this genus, as well as being a model for other forage legumes.

5.
Sci Rep ; 9(1): 5575, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30944349

RESUMEN

The benefits of shelter in increasing crop yields and accelerating ripening has been well researched in fruit, arable and horticultural crops. Its benefits to pasture, despite its importance for livestock production, is less well researched. In this work, Miscanthus shelterbelts were established on an intensively irrigated dairy farm. Seven key ecosystem services associated with these belts were identified and quantified. Pasture yield and quality were recorded in Miscanthus-sheltered and control field boundaries with little shelter. Pasture yield increased by up to 14% in the sheltered areas downwind of Miscanthus. Pasture quality was equivalent in the sheltered and open areas. Miscanthus provided more favourable nesting sites for bumblebees and for New Zealand endemic lizards (skinks) compared to field boundaries. The sheltered areas also had higher mineralisation rates of organic matter and higher numbers of earthworms. Using a high-yielding sterile grass such as Miscanthus to deliver a wide range of ecosystem services also produced a bioenergy feedstock. In conclusion, full benefits of shelterbelts to the farming system cannot be fully assessed unless direct and indirect benefits are properly assessed, as in this work.


Asunto(s)
Agricultura/métodos , Poaceae/crecimiento & desarrollo , Animales , Biocombustibles , Productos Agrícolas/crecimiento & desarrollo , Ecosistema , Granjas , Ganado/fisiología , Nueva Zelanda
6.
Ecology ; 100(5): e02665, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30770567

RESUMEN

Ultraviolet (UV) radiation intensities differ among global regions, with significantly higher levels in the southern hemisphere. UV-B may act as an environmental filter during plant invasions, which might particularly apply to plant species from Europe introduced to New Zealand. Just like for any other abiotic or biotic filter, successful invaders can cope with novel environmental conditions via plastic responses and/or through rapid adaptation by natural selection in the exotic range. We conducted a multispecies experiment with herbaceous plants in two common gardens located in the species' native and exotic ranges, in Germany and New Zealand, respectively. We used plants of German and New Zealand origin of eight species to test for adaptation to higher UV-B radiation in their new range. In each common garden, all plants were exposed to three radiation treatments: (1) ambient sunlight, (2) exclusion of UV-B while transmitting ambient UV-A, and (3) combined exclusion of UV-B and UV-A. Linear mixed-effect models revealed significant effects of UV-B on growth and leaf traits and an indication for UV-B-induced biomass reduction in both common gardens pointing to an impact of natural, ambient UV radiation intensities experienced by plants in the northern and in the southern hemisphere. In both common gardens, the respective local plants (i.e., German origins in Germany, New Zealand origins in New Zealand) displayed enhanced productivity and aboveground biomass allocation, thus providing evidence for recent evolutionary processes in the exotic range. Genetic differentiation between different origins in consequence of divergent local selection pressures was found for specific leaf area. This differentiation particularly hints at different selective forces in both ranges while only little evidence was found for an immediate selective effect of high UV-B intensities in the exotic range. However, reaction norm slopes across ranges revealed higher plasticity of exotic individuals in functional leaf traits that might allow for a more sensitive regulation of photoprotection measures in response to UV-B. During the colonization, New Zealand populations might have been selected for the observed higher phenotypic plasticity and a consequently increased ability to successfully spread in the exotic range.


Asunto(s)
Ecosistema , Rayos Ultravioleta , Europa (Continente) , Alemania , Humanos , Nueva Zelanda
7.
PLoS One ; 13(4): e0194977, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29617413

RESUMEN

Lolium perenne L. (perennial ryegrass) is the most important pasture grass species in temperate regions of the world. However, its growth is restricted in summer dry environments. Germplasm screening can be used to identify accessions or individual plants for incorporation into breeding programs for drought tolerance. We selected nine perennial ryegrass accessions from different global origins and from a range of climatic and environmental conditions. In addition, the perennial ryegrass cultivar 'Grasslands Impact' was chosen as a reference. The accessions were grown for 360 days in a controlled environment through six consecutive drought stress and recovery cycles. We observed intraspecific differences in drought stress responsiveness for shoot biomass and survival from the third stress cycle. An accession from Norway had 50% more shoot dry matter than the next best-performing accession after six drought cycles. Compared with the reference cultivar 'Grasslands Impact', shoot dry matter of the accession from Norway was more than seven times higher after six drought cycles, indicating superior performance of this ecotype under drought stress. Drought tolerance was characterized by osmotic adjustment and higher relative leaf water content at low soil moisture levels. Furthermore, the findings of this study identify solute potential as an early predictor of drought stress tolerance. These intraspecific differences can be used in breeding programs for the development of drought-tolerant perennial ryegrass cultivars.


Asunto(s)
Sequías , Lolium/crecimiento & desarrollo , Biomasa , Lolium/fisiología , Hojas de la Planta/fisiología , Brotes de la Planta/fisiología , Especificidad de la Especie , Agua/metabolismo
8.
New Phytol ; 208(4): 1188-201, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26377591

RESUMEN

The transcriptional regulation of four phylogenetically distinct members of a family of Kunitz proteinase inhibitor (KPI) genes isolated from white clover (Trifolium repens; designated Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5) has been investigated to determine their wider functional role. The four genes displayed differential transcription during seed germination, and in different tissues of the mature plant, and transcription was also ontogenetically regulated. Heterologous over-expression of Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5 in Nicotiana tabacum retarded larval growth of the herbivore Spodoptera litura, and an increase in the transcription of the pathogenesis-related genes PR1 and PR4 was observed in the Tr-KPI1 and Tr-KPI4 over-expressing lines. RNA interference (RNAi) knock-down lines in white clover displayed significantly altered vegetative growth phenotypes with inhibition of shoot growth and a stimulation of root growth, while knock-down of Tr-KPI1, Tr-KPI2 and Tr-KPI5 transcript abundance also retarded larval growth of S. litura. Examination of these RNAi lines revealed constitutive stress-associated phenotypes as well as altered transcription of cellular signalling genes. These results reveal a functional redundancy across members of the KPI gene family. Further, the regulation of transcription of at least one member of the family, Tr-KPI2, may occupy a central role in the maintenance of a cellular homeostasis.


Asunto(s)
Genes de Plantas , Familia de Multigenes , Péptido Hidrolasas/metabolismo , Péptidos/genética , Fenotipo , Proteínas de Plantas/genética , Transcripción Genética , Trifolium/genética , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Péptidos/metabolismo , Filogenia , Enfermedades de las Plantas/genética , Hojas de la Planta , Proteínas de Plantas/metabolismo , Raíces de Plantas , Interferencia de ARN , Transducción de Señal , Estrés Fisiológico , Nicotiana/genética , Nicotiana/metabolismo , Trifolium/crecimiento & desarrollo , Trifolium/metabolismo
9.
Funct Plant Biol ; 39(2): 167-177, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32480771

RESUMEN

White clover (Trifolium repens L.) is an important pasture legume in temperate regions, but growth is often strongly reduced under summer drought. Cloned individuals from a full-sib progeny of a pair cross between two phenotypically distinct white clover populations were exposed to water deficit in pots under outdoor conditions for 9 weeks, while control pots were maintained at field capacity. Water deficit decreased leaf water potential by more than 50% overall, but increased the levels of the flavonol glycosides of quercetin (Q) and the ratio of quercetin and kaempferol glycosides (QKR) by 111% and by 90%, respectively. Water deficit reduced dry matter (DM) by 21%, with the most productive genotypes in the controls showing the greatest proportional reduction. The full-sib progeny displayed a significant increase in the root:shoot ratio by 53% under water deficit. Drought-induced changes in plant morphology were associated with changes in Q, but not kaempferol (K) glycosides. The genotypes with high QKR levels reduced their DM production least under water deficit and increased their Q glycoside levels and QKR most. These data show, at the individual genotype level, that increased Q glycoside accumulation in response to water deficit stress can be positively associated with retaining higher levels of DM production.

10.
PLoS One ; 6(4): e18949, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21526153

RESUMEN

An outdoor study was conducted to examine relationships between plant productivity and stress-protective phenolic plant metabolites. Twenty-two populations of the pasture legume white clover were grown for 4½ months during spring and summer in Palmerston North, New Zealand. The major phenolic compounds identified and quantified by HPLC analysis were glycosides of the flavonoids quercetin and kaempferol. Multivariate analysis revealed a trade-off between flavonoid accumulation and plant productivity attributes. White clover populations with high biomass production, large leaves and thick tap roots showed low levels of quercetin glycoside accumulation and low quercetin:kaempferol ratios, while the opposite was true for less productive populations. The latter included stress-resistant ecotypes from Turkey and China, and the analysis also identified highly significant positive relationships of quercetin glycoside accumulation with plant morphology (root:shoot ratio). Importantly, a high degree of genetic variation was detected for most of the measured traits. These findings suggest merit for considering flavonoids such as quercetin as potential selection criteria in the genetic improvement of white clover and other crops.


Asunto(s)
Biomasa , Flavonoides/metabolismo , Trifolium/crecimiento & desarrollo , Trifolium/metabolismo , Análisis por Conglomerados , Glicósidos/metabolismo , Nueva Zelanda , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Carácter Cuantitativo Heredable , Quercetina/metabolismo , Lluvia , Estándares de Referencia , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...