Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 15460, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726376

RESUMEN

Upstream of the efficiency of proton or carbon ion beams in cancer therapy, and to optimize hadrontherapy results, we analysed the chemistry of Fricke solutions in track-end of 64-MeV protons and 1.14-GeV carbon ions. An original optical setup is designed to determine the primary track-segment yields along the last millimetres of the ion track with a sub-millimetre resolution. The Fe3+-yield falls in the Bragg peak to (4.9 ± 0.4) × 10-7 mol/J and 1.9 × 10-7 mol/J, under protons and carbon ions respectively. Beyond the Bragg peak, a yield recovery is observed over 1 mm for proton beams. It is attributed to the intermediate-LET of protons in this region where their energy decreases and energy distribution becomes broader, in relation with the longitudinal straggling of the beam. Consequently to this LET decrease in the distal part of the Bragg peak, Fe3+-yield increases. For the first time, this signature is highlighted at the chemical level under proton irradiation. Nevertheless, this phenomenon is not identified for carbon ion beams since their straggling is lower. It would need a greater spatial resolution to be observed.

2.
Cancer Radiother ; 26(8): 1016-1026, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35803860

RESUMEN

PURPOSE: Radiotherapy with protons (PT) is a standard treatment of ocular tumors. It achieves excellent tumor control, limited toxicities, and the preservation of important functional outcomes, such as vision. Although PT may appear as one homogenous technique, it can be performed using dedicated ocular passive scattering PT or, increasingly, Pencil Beam Scanning (PBS), both with various degrees of patient-oriented customization. MATERAIAL AND METHODS: MEDICYC PT facility of Nice are detailed with respect to their technical, dosimetric, microdosimetric and radiobiological, patient and tumor-customization process of PT planning and delivery that are key. 6684 patients have been treated for ocular tumors (1991-2020). Machine characteristics (accelerator, beam line, beam monitoring) allow efficient proton extraction, high dose rate, sharp lateral and distal penumbrae, and limited stray radiation in comparison to beam energy reduction and subsequent straggling with high-energy PBS PT. Patient preparation before PT includes customized setup and image-guidance, CT-based planning, and ocular PT software modelling of the patient eye with integration of beam modifiers. Clinical reports have shown excellent tumor control rates (∼95%), vision preservation and limited toxicity rates (papillopathy, retinopathy, neovascular glaucoma, dry eye, madarosis, cataract). RESULTS: Although demanding, dedicated ocular PT has proven its efficiency in achieving excellent tumor control, OAR sparing and patient radioprotection. It is therefore worth adaptations of the equipments and practice. CONCLUSIONS: Some of these adaptations can be transferred to other PT centers and should be acknowledeged when using non-PT options.


Asunto(s)
Neoplasias , Terapia de Protones , Humanos , Terapia de Protones/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Ojo , Protones
3.
Appl Radiat Isot ; 184: 110190, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35303628

RESUMEN

A new proton beam-line dedicated to R&D programs has been developed at CentreAntoine Lacassagne (CAL), in Nice (France), in collaboration with the Centrenational d'études spatiales (CNES). This is the second beam-line of the MEDICYC 65 MeV cyclotron that is currently in operation, the first being the clinical 'eye-line' used for ocular proton therapy. The R&D beam-line is proposed with two configurations, the first producing a Gaussian narrow beam of a few mm width, the second a 100 mm diameter flat beam with a homogeneity better than ±3%. The energy range is (20 - ∼60) MeV, where the exact upper limit depends on the beam configuration being used. The energy spread of the non-degraded beam is (0.3 ± 0.1) MeV. A beam current between 10 pA and 10 µA can be produced with a stability better than 0.2% above 100 pA, and 2% below. The beam can be monitored online at a precision better than 5% in the flux range 1E5 (1E6) - 1E9 (1E10) p/cm2/s for a flat (Gaussian) configuration, although work is in progress to extend this range. Targeted applications for the R&D beam-line are instrumentation research, radiation tolerance tests of components and radiobiology.


Asunto(s)
Terapia de Protones , Protones , Ciclotrones , Terapia de Protones/métodos , Radiobiología , Dosificación Radioterapéutica , Investigación
4.
Phys Rev Lett ; 105(12): 121101, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20867623

RESUMEN

The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which extends previously published measurements down to 60 MeV and up to 180 GeV in kinetic energy. During 850 days of data acquisition approximately 1500 antiprotons were observed. The measurements are consistent with purely secondary production of antiprotons in the Galaxy. More precise secondary production models are required for a complete interpretation of the results.

5.
Nature ; 458(7238): 607-9, 2009 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-19340076

RESUMEN

Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium, which is referred to as a 'secondary source'. Positrons might also originate in objects such as pulsars and microquasars or through dark matter annihilation, which would be 'primary sources'. Previous statistically limited measurements of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5-100 GeV. We find that the positron fraction increases sharply over much of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.

6.
Phys Rev Lett ; 102(5): 051101, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19257498

RESUMEN

A new measurement of the cosmic-ray antiproton-to-proton flux ratio between 1 and 100 GeV is presented. The results were obtained with the PAMELA experiment, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. During 500 days of data collection a total of about 1000 antiprotons have been identified, including 100 above an energy of 20 GeV. The high-energy results are a tenfold improvement in statistics with respect to all previously published data. The data follow the trend expected from secondary production calculations and significantly constrain contributions from exotic sources, e.g., dark matter particle annihilations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...