Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(6): e11538, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38859887

RESUMEN

Understanding the factors that drive spatial synchrony among populations or species is important for management and recovery of populations. The range-wide declines in Atlantic salmon (Salmo salar) populations may be the result of broad-scale changes in the marine environment. Salmon undergo rapid growth in the ocean; therefore changing marine conditions may affect body size and fecundity estimates used to evaluate whether stock reference points are met. Using a dataset that spanned five decades, 172,268 individuals, and 19 rivers throughout Eastern Canada, we investigated the occurrence of spatial synchrony in changes in the body size of returning wild adult Atlantic salmon. Body size was then related to conditions in the marine environment (i.e., climate indices, thermal habitat availability, food availability, density-dependence, and fisheries exploitation rates) that may act on all populations during the ocean feeding phase of their life cycle. Body size increased during the 1980s and 1990s for salmon that returned to rivers after one (1SW) or two winters at sea (2SW); however, significant changes were only observed for 1SW and/or 2SW in some mid-latitude and northern rivers (10/13 rivers with 10 of more years of data during these decades) and not in southern rivers (0/2), suggesting weak spatial synchrony across Eastern Canada. For 1SW salmon in nine rivers, body size was longer when fisheries exploitation rates were lower. For 2SW salmon, body size was longer when suitable thermal habitat was more abundant (significant for 3/8 rivers) and the Atlantic Multidecadal Oscillation was higher (i.e., warmer sea surface temperatures; significant for 4/8 rivers). Overall, the weak spatial synchrony and variable effects of covariates on body size across rivers suggest that changes in Atlantic salmon body size may not be solely driven by shared conditions in the marine environment. Regardless, body size changes may have consequences for population management and recovery through the relationship between size and fecundity.

2.
J Anim Ecol ; 93(7): 823-835, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38764208

RESUMEN

Disturbances can produce a spectrum of short- and long-term ecological consequences that depend on complex interactions of the characteristics of the event, antecedent environmental conditions, and the intrinsic properties of resistance and resilience of the affected biological system. We used Hurricane Harvey's impact on coastal rivers of Texas to examine the roles of storm-related changes in hydrology and long-term precipitation regime on the response of stream invertebrate communities to hurricane disturbance. We detected declines in richness, diversity and total abundance following the storm, but responses were strongly tied to direct and indirect effects of long-term aridity and short-term changes in stream hydrology. The amount of rainfall a site received drove both flood duration and flood magnitude across sites, but lower annual rainfall amounts (i.e. aridity) increased flood magnitude and decreased flood duration. Across all sites, flood duration was positively related to the time it took for invertebrate communities to return to a long-term baseline and flood magnitude drove larger invertebrate community responses (i.e. changes in diversity and total abundance). However, invertebrate response per unit flood magnitude was lower in sub-humid sites, potentially because of differences in refuge availability or ecological-evolutionary interactions. Interestingly, sub-humid streams had temporary large peaks in invertebrate total abundance and diversity following recovery period that may be indicative of the larger organic matter pulses expected in these systems because of their comparatively well-developed riparian vegetation. Our findings show that hydrology and long-term precipitation regime predictably affected invertebrate community responses and, thus, our work underscores the important influence of local climate to ecosystem sensitivity to disturbances.


Asunto(s)
Tormentas Ciclónicas , Invertebrados , Ríos , Animales , Invertebrados/fisiología , Texas , Biodiversidad , Lluvia , Clima , Inundaciones , Hidrología , Ecosistema
3.
Ecology ; 103(11): e3800, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35726198

RESUMEN

Partial migration strategies, in which some individuals migrate but others do not, are widely observed in populations of migratory animals. Such patterns could arise via variation in migratory behaviors made by individual animals, via genetic variation in migratory predisposition, or simply by variation in migration opportunities mediated by environmental conditions. Here we use spatiotemporal variation in partial migration across populations of an amphidromous Hawaiian goby to test whether stream or ocean conditions favor completing its life cycle entirely within freshwater streams rather than undergoing an oceanic larval migration. Across 35 watersheds, microchemical analysis of otoliths revealed that most adult Awaous stamineus were freshwater residents (62% of n = 316 in 2009, 83% of n = 274 in 2011), but we found considerable variation among watersheds. We then tested the hypothesis that the prevalence of freshwater residency increases with the stability of stream flows and decreases with the availability of dispersal pathways arising from ocean hydrodynamics. We found that streams with low variation of daily discharge were home to a higher incidence of freshwater residents in each survey year. The magnitude of the shift in freshwater residency between survey years was positively associated with predicted interannual variability in the success of larval settlement in streams on each island based on passive drift in ocean currents. We built on these findings by developing a theoretical model of goby life history to further evaluate whether mediation of migration outcomes by stream and ocean hydrodynamics could be sufficient to explain the range of partial migration frequency observed across populations. The model illustrates that the proportion of larvae entering the ocean and differential survival of freshwater-resident versus ocean-going larvae are plausible mechanisms for range-wide shifts in migration strategies. Thus, we propose that hydrologic variation in both ocean and stream environments contributes to spatiotemporal variation in the prevalence of migration phenotypes in A. stamineus. Our empirical and theoretical results suggest that the capacity for partial migration could enhance the persistence of metapopulations of diadromous fish when confronted with variable ocean and stream conditions.


Asunto(s)
Perciformes , Ríos , Animales , Hawaii , Hidrodinámica , Peces , Perciformes/genética , Larva , Migración Animal
4.
Sci Adv ; 8(9): eabl9155, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35235355

RESUMEN

Tropical cyclones drive coastal ecosystem dynamics, and their frequency, intensity, and spatial distribution are predicted to shift with climate change. Patterns of resistance and resilience were synthesized for 4138 ecosystem time series from n = 26 storms occurring between 1985 and 2018 in the Northern Hemisphere to predict how coastal ecosystems will respond to future disturbance regimes. Data were grouped by ecosystems (fresh water, salt water, terrestrial, and wetland) and response categories (biogeochemistry, hydrography, mobile biota, sedentary fauna, and vascular plants). We observed a repeated pattern of trade-offs between resistance and resilience across analyses. These patterns are likely the outcomes of evolutionary adaptation, they conform to disturbance theories, and they indicate that consistent rules may govern ecosystem susceptibility to tropical cyclones.

5.
Sci Data ; 9(1): 45, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145119

RESUMEN

Fish swimming capacity is a key life history trait critical to many aspects of their ecology. U-crit (critical) swimming speeds provide a robust, repeatable relative measure of swimming speed that can serve as a useful surrogate for other measures of swimming performance. Here we collate and make available one the most comprehensive datasets on U-crit swimming abilities of tropical marine fish larvae and pelagic juveniles, most of which are reef associated as adults. The dataset includes U-crit speed measurements for settlement stage fishes across a large range of species and families obtained mostly from field specimens collected in light traps and crest nets; and the development of swimming abilities throughout ontogeny for a range of species using reared larvae. In nearly all instances, the size of the individual was available, and in many cases, data include other morphological measurements (e.g. "propulsive area") useful for predicting swimming capacity. We hope these data prove useful for further studies of larval swimming performance and other broader syntheses.


Asunto(s)
Peces , Larva , Natación , Animales , Ecología , Clima Tropical
6.
PeerJ ; 8: e8485, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32095340

RESUMEN

BACKGROUND: The gray snapper (Lutjanus griseus) has a tropical and subtropical distribution. In much of its range this species represents one of the most important fishery resources because of its high quality meat and market value. Due to this, this species is vulnerable to overfishing, and population declines have been observed in parts of its range. In recent decades, it has been established that knowing the level of genetic connectivity is useful for establishing appropriate management and conservation strategies given that genetic isolation can drive towards genetic loss. Presently the level of genetic connectivity between subpopulations of L. griseus of the southern region of the Gulf of Mexico and the Caribbean Sea remains unknown. METHODS: In the present study we analyze genetic structure and diversity for seven subpopulations in the southern Gulf of Mexico and the Mexican Caribbean Sea. Eight microsatellite primers of phylogenetically closely related species to L. griseus were selected. RESULTS: Total heterozygosity was 0.628 and 0.647 in the southern Gulf of Mexico and the Mexican Caribbean Sea, however, results obtained from AMOVA and R ST indicated a lack of genetic difference between the major basins. We also found no association between genetic difference and geographic distance, and moderately high migration rates (N m = > 4.1) suggesting ongoing gene flow among the subpopulations. Gene flow within the southern Gulf of Mexico appears to be stronger going from east-to-west. CONCLUSIONS: Migration rates tended to be higher between subpopulations within the same basin compared to those across basins indicating some regionalization. High levels of genetic diversity and genetic flow suggest that the population is quite large; apparently, the fishing pressure has not caused a bottleneck effect.

7.
PeerJ ; 5: e3043, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28243542

RESUMEN

Introduced Indo-Pacific red lionfish (Pterois volitans/miles) have spread throughout the greater Caribbean and are associated with a number of negative impacts on reef ecosystems. Human interventions, in the form of culling activities, are becoming common to reduce their numbers and mitigate the negative effects associated with the invasion. However, marine managers must often decide how to best allocate limited resources. Previous work has identified the population size thresholds needed to limit the negative impacts of lionfish. Here we develop a framework that allows managers to predict the removal effort required to achieve specific targets (represented as the percent of lionfish remaining on the reef). We found an important trade-off between time spent removing and achieving an increasingly smaller lionfish density. The model used in our suggested framework requires relatively little data to parameterize, allowing its use with already existing data, permitting managers to tailor their culling strategy to maximize efficiency and rate of success.

8.
PeerJ ; 5: e3996, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29302383

RESUMEN

The invasion of the western Atlantic Ocean by the Indo-Pacific red lionfish (Pterois volitans) has had devastating consequences for marine ecosystems. Estimating the number of colonizing lionfish can be useful in identifying the introduction pathway and can inform policy decisions aimed at preventing similar invasions. It is well-established that at least ten lionfish were initially introduced. However, that estimate has not faced probabilistic scrutiny and is based solely on the number of haplotypes in the maternally-inherited mitochondrial control region. To rigorously estimate the number of lionfish that were introduced, we used a forward-time, Wright-Fisher, population genetic model in concert with a demographic, life-history model to simulate the invasion across a range of source population sizes and colonizing population fecundities. Assuming a balanced sex ratio and no Allee effects, the simulations indicate that the Atlantic population was founded by 118 (54-514, 95% HPD) lionfish from the Indo-Pacific, the Caribbean by 84 (22-328, 95% HPD) lionfish from the Atlantic, and the Gulf of Mexico by at least 114 (no upper bound on 95% HPD) lionfish from the Caribbean. Increasing the size, and therefore diversity, of the Indo-Pacific source population and fecundity of the founding population caused the number of colonists to decrease, but with rapidly diminishing returns. When the simulation was parameterized to minimize the number of colonists (high θ and relative fecundity), 96 (48-216, 95% HPD) colonists were most likely. In a more realistic scenario with Allee effects (e.g., 50% reduction in fecundity) plaguing the colonists, the most likely number of lionfish increased to 272 (106-950, 95% HPD). These results, in combination with other published data, support the hypothesis that lionfish were introduced to the Atlantic via the aquarium trade, rather than shipping. When building the model employed here, we made assumptions that minimize the number of colonists, such as the lionfish being introduced in a single event. While we conservatively modelled the introduction pathway as a single release of lionfish in one location, it is more likely that a combination of smaller and larger releases from a variety of aquarium trade stakeholders occurred near Miami, Florida, which could have led to even larger numbers of colonists than simulated here. Efforts to prevent future invasions via the aquarium trade should focus on the education of stakeholders and the prohibition of release, with adequate rewards for compliance and penalties for violations.

9.
PLoS One ; 11(4): e0153381, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27119659

RESUMEN

The phenomenon of chaotic genetic patchiness is a pattern commonly seen in marine organisms, particularly those with demersal adults and pelagic larvae. This pattern is usually associated with sweepstakes recruitment and variable reproductive success. Here we investigate the biological underpinnings of this pattern in a species of marine goby Coryphopterus personatus. We find that populations of this species show tell-tale signs of chaotic genetic patchiness including: small, but significant, differences in genetic structure over short distances; a non-equilibrium or "chaotic" pattern of differentiation among locations in space; and within locus, within population deviations from the expectations of Hardy-Weinberg equilibrium (HWE). We show that despite having a pelagic larval stage, and a wide distribution across Caribbean coral reefs, this species forms groups of highly related individuals at small spatial scales (<10 metres). These spatially clustered family groups cause the observed deviations from HWE and local population differentiation, a finding that is rarely demonstrated, but could be more common than previously thought.


Asunto(s)
Peces/genética , Variación Genética/genética , Repeticiones de Microsatélite/genética , Animales , Región del Caribe , Arrecifes de Coral , Genética de Población/métodos , Larva/genética , Perciformes/genética , Reproducción/genética
10.
Oecologia ; 168(1): 61-71, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21735201

RESUMEN

The persistence and resilience of marine populations in the face of disturbances is directly affected by connectivity among populations. Thus, understanding the magnitude and pattern of connections among populations and the temporal variation in these patterns is critical for the effective management and conservation of marine species. Despite recent advances in our understanding of marine connectivity, few empirical studies have directly measured the magnitude or pattern of connections among populations of marine fishes, and none have explicitly investigated temporal variation in demographic connectivity. We use genetic assignment tests to track the dispersal of 456 individual larval fishes to quantify the extent of connectivity, dispersal, self-recruitment and local retention within and among seven populations of a coral reef fish (Stegastes partitus) over a three-year period. We found that some larvae do disperse long distances (~200 km); however, self-recruitment was a regular phenomenon. Importantly, we found that dispersal distances, self-recruitment, local retention and the pattern of connectivity varied significantly among years. Our data highlight the unpredictable nature of connectivity, and underscore the need for more, temporally replicated, empirical measures of connectivity to inform management decisions.


Asunto(s)
Arrecifes de Coral , Genética de Población , Perciformes/fisiología , Dinámica Poblacional , Animales , Organismos Acuáticos , Belice , Ecosistema , Larva/genética , Biología Marina , México , Repeticiones de Microsatélite , Perciformes/genética
11.
Mol Ecol Resour ; 10(2): 404-8, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21565039

RESUMEN

This article documents the addition of 411 microsatellite marker loci and 15 pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Acanthopagrus schlegeli, Anopheles lesteri, Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus oryzae, Aspergillus terreus, Branchiostoma japonicum, Branchiostoma belcheri, Colias behrii, Coryphopterus personatus, Cynogolssus semilaevis, Cynoglossus semilaevis, Dendrobium officinale, Dendrobium officinale, Dysoxylum malabaricum, Metrioptera roeselii, Myrmeciza exsul, Ochotona thibetana, Neosartorya fischeri, Nothofagus pumilio, Onychodactylus fischeri, Phoenicopterus roseus, Salvia officinalis L., Scylla paramamosain, Silene latifo, Sula sula, and Vulpes vulpes. These loci were cross-tested on the following species: Aspergillus giganteus, Colias pelidne, Colias interior, Colias meadii, Colias eurytheme, Coryphopterus lipernes, Coryphopterus glaucofrenum, Coryphopterus eidolon, Gnatholepis thompsoni, Elacatinus evelynae, Dendrobium loddigesii Dendrobium devonianum, Dysoxylum binectariferum, Nothofagus antarctica, Nothofagus dombeyii, Nothofagus nervosa, Nothofagus obliqua, Sula nebouxii, and Sula variegata. This article also documents the addition of 39 sequencing primer pairs and 15 allele specific primers or probes for Paralithodes camtschaticus.

12.
J Exp Biol ; 210(Pt 14): 2436-43, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17601947

RESUMEN

The swimming abilities of fishes are of vital importance to their ecology, and studies on fish swimming have been the focus of research for over a century. Here we explore the relationship between swimming ability and external body morphology, using data on U(crit) swimming speeds of 100 species of pre-settlement juvenile coral reef fishes (at the transition between the larval and adult habitats), comprising 26 different families from 5 orders. The taxonomic diversity of this methodologically consistent dataset provides a unique opportunity to examine the relationship between form and function in fish swimming across a broad taxonomic range. Overall, we found that a predictive model incorporating total length (TL), the square of caudal peduncle depth factor (CPDF(2)) and aspect ratio (AR) can be used to accurately predict swimming performance of a wide range of fish families, and was able to explain 69% of the variability in swimming performance of these pre-settlement juvenile fishes. The model was also able to successfully predict the swimming speed of an out-group salmonid species (Oncorhynchus mykiss). There was no evidence that the model fit differed among taxonomic groups, despite the inclusion of five different orders of fishes, suggesting that body morphology sufficiently explains the bulk of differences in swimming performance. Furthermore, the model appears to work equally well for fishes from the Great Barrier Reef and the Caribbean, and for families with different adult habitat associations and swimming modes. It remains to be determined how well the model predicts the swimming abilities of temperate species as well as adults of these same species. This model provides an invaluable means of predicting swimming abilities of pre-settlement juvenile fishes that are unable to be reared in the laboratory, do not perform well in swimming flumes or are unable to be captured live in the field.


Asunto(s)
Peces/fisiología , Natación/fisiología , Animales , Fenómenos Biomecánicos , Tamaño Corporal , Peces/anatomía & histología , Peces/crecimiento & desarrollo , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...