Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Clin Cancer Res ; 30(1): 159-175, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-37861398

RESUMEN

PURPOSE: Despite high clinical need, there are no biomarkers that accurately predict the response of patients with metastatic melanoma to anti-PD-1 therapy. EXPERIMENTAL DESIGN: In this multicenter study, we applied protein depletion and enrichment methods prior to various proteomic techniques to analyze a serum discovery cohort (n = 56) and three independent serum validation cohorts (n = 80, n = 12, n = 17). Further validation analyses by literature and survival analysis followed. RESULTS: We identified several significantly regulated proteins as well as biological processes such as neutrophil degranulation, cell-substrate adhesion, and extracellular matrix organization. Analysis of the three independent serum validation cohorts confirmed the significant differences between responders (R) and nonresponders (NR) observed in the initial discovery cohort. In addition, literature-based validation highlighted 30 markers overlapping with previously published signatures. Survival analysis using the TCGA database showed that overexpression of 17 of the markers we identified correlated with lower overall survival in patients with melanoma. CONCLUSIONS: Ultimately, this multilayered serum analysis led to a potential marker signature with 10 key markers significantly altered in at least two independent serum cohorts: CRP, LYVE1, SAA2, C1RL, CFHR3, LBP, LDHB, S100A8, S100A9, and SAA1, which will serve as the basis for further investigation. In addition to patient serum, we analyzed primary melanoma tumor cells from NR and found a potential marker signature with four key markers: LAMC1, PXDN, SERPINE1, and VCAN.


Asunto(s)
Melanoma , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Proteómica , Biomarcadores de Tumor/metabolismo , Análisis de Supervivencia
2.
Elife ; 122023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38127790

RESUMEN

Glioblastoma (GBM) harbors a highly immunosuppressive tumor microenvironment (TME) which influences glioma growth. Major efforts have been undertaken to describe the TME on a single-cell level. However, human data on regional differences within the TME remain scarce. Here, we performed high-depth single-cell RNA sequencing (scRNAseq) on paired biopsies from the tumor center, peripheral infiltration zone and blood of five primary GBM patients. Through analysis of >45,000 cells, we revealed a regionally distinct transcription profile of microglia (MG) and monocyte-derived macrophages (MdMs) and an impaired activation signature in the tumor-peripheral cytotoxic-cell compartment. Comparing tumor-infiltrating CD8+ T cells with circulating cells identified CX3CR1high and CX3CR1int CD8+ T cells with effector and memory phenotype, respectively, enriched in blood but absent in the TME. Tumor CD8+ T cells displayed a tissue-resident memory phenotype with dysfunctional features. Our analysis provides a regionally resolved mapping of transcriptional states in GBM-associated leukocytes, serving as an additional asset in the effort towards novel therapeutic strategies to combat this fatal disease.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/patología , Linfocitos T CD8-positivos , Macrófagos/patología , Glioma/genética , Leucocitos/patología , Microambiente Tumoral/genética , Neoplasias Encefálicas/patología
3.
Sci Transl Med ; 15(705): eadf5302, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37467314

RESUMEN

Glioblastoma (GBM) is the most aggressive form of primary brain tumor, for which effective therapies are urgently needed. Cancer cells are capable of evading clearance by phagocytes such as microglia- and monocyte-derived cells through engaging tolerogenic programs. Here, we found that high expression of sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) correlates with reduced survival in patients with GBM. Using microglia- and monocyte-derived cell-specific knockouts of Siglec-E, the murine functional homolog of Siglec-9, together with single-cell RNA sequencing, we demonstrated that Siglec-E inhibits phagocytosis by these cells, thereby promoting immune evasion. Loss of Siglec-E on monocyte-derived cells further enhanced antigen cross-presentation and production of pro-inflammatory cytokines, which resulted in more efficient T cell priming. This bridging of innate and adaptive responses delayed tumor growth and resulted in prolonged survival in murine models of GBM. Furthermore, we showed the combinatorial activity of Siglec-E blockade and other immunotherapies demonstrating the potential for targeting Siglec-9 as a treatment for patients with GBM.


Asunto(s)
Glioblastoma , Ácido N-Acetilneuramínico , Humanos , Ratones , Animales , Ácido N-Acetilneuramínico/metabolismo , Glioblastoma/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Fagocitosis/fisiología , Microglía/metabolismo
4.
Nat Commun ; 13(1): 6777, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351919

RESUMEN

Growing evidence links COVID-19 with acute and long-term neurological dysfunction. However, the pathophysiological mechanisms resulting in central nervous system involvement remain unclear, posing both diagnostic and therapeutic challenges. Here we show outcomes of a cross-sectional clinical study (NCT04472013) including clinical and imaging data and corresponding multidimensional characterization of immune mediators in the cerebrospinal fluid (CSF) and plasma of patients belonging to different Neuro-COVID severity classes. The most prominent signs of severe Neuro-COVID are blood-brain barrier (BBB) impairment, elevated microglia activation markers and a polyclonal B cell response targeting self-antigens and non-self-antigens. COVID-19 patients show decreased regional brain volumes associating with specific CSF parameters, however, COVID-19 patients characterized by plasma cytokine storm are presenting with a non-inflammatory CSF profile. Post-acute COVID-19 syndrome strongly associates with a distinctive set of CSF and plasma mediators. Collectively, we identify several potentially actionable targets to prevent or intervene with the neurological consequences of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Humanos , Estudios Transversales , SARS-CoV-2 , Autoinmunidad , Estudios Prospectivos , Síndrome Post Agudo de COVID-19
5.
Sci Adv ; 8(26): eabn9440, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35776791

RESUMEN

A patient-tailored, ex vivo drug response platform for glioblastoma (GBM) would facilitate therapy planning, provide insights into treatment-induced mechanisms in the immune tumor microenvironment (iTME), and enable the discovery of biomarkers of response. We cultured regionally annotated GBM explants in perfusion bioreactors to assess iTME responses to immunotherapy. Explants were treated with anti-CD47, anti-PD-1, or their combination, and analyzed by multiplexed microscopy [CO-Detection by indEXing (CODEX)], enabling the spatially resolved identification of >850,000 single cells, accompanied by explant secretome interrogation. Center and periphery explants differed in their cell type and soluble factor composition, and responses to immunotherapy. A subset of explants displayed increased interferon-γ levels, which correlated with shifts in immune cell composition within specified tissue compartments. Our study demonstrates that ex vivo immunotherapy of GBM explants enables an active antitumoral immune response within the tumor center and provides a framework for multidimensional personalized assessment of tumor response to immunotherapy.

6.
Front Oncol ; 12: 830627, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35494048

RESUMEN

Purpose: We explored imaging and blood bio-markers for survival prediction in a cohort of patients with metastatic melanoma treated with immune checkpoint inhibition. Materials and Methods: 94 consecutive metastatic melanoma patients treated with immune checkpoint inhibition were included into this study. PET/CT imaging was available at baseline (Tp0), 3 months (Tp1) and 6 months (Tp2) after start of immunotherapy. Radiological response at Tp2 was evaluated using iRECIST. Total tumor burden (TB) at each time-point was measured and relative change of TB compared to baseline was calculated. LDH, CRP and S-100B were also analyzed. Cox proportional hazards model and logistic regression were used for survival analysis. Results: iRECIST at Tp2 was significantly associated with overall survival (OS) with C-index=0.68. TB at baseline was not associated with OS, whereas TB at Tp1 and Tp2 provided similar predictive power with C-index of 0.67 and 0.71, respectively. Appearance of new metastatic lesions during follow-up was an independent prognostic factor (C-index=0.73). Elevated LDH and S-100B ratios at Tp2 were significantly associated with worse OS: C-index=0.73 for LDH and 0.73 for S-100B. Correlation of LDH with TB was weak (r=0.34). A multivariate model including TB change, S-100B, and appearance of new lesions showed the best predictive performance with C-index=0.83. Conclusion: Our analysis shows only a weak correlation between LDH and TB. Additionally, baseline TB was not a prognostic factor in our cohort. A multivariate model combining early blood and imaging biomarkers achieved the best predictive power with regard to survival, outperforming iRECIST.

7.
Nat Cancer ; 2(12): 1387-1405, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34957415

RESUMEN

Secreted extracellular vesicles (EVs) influence the tumor microenvironment and promote distal metastasis. Here, we analyzed the involvement of melanoma-secreted EVs in lymph node pre-metastatic niche formation in murine models. We found that small EVs (sEVs) derived from metastatic melanoma cell lines were enriched in nerve growth factor receptor (NGFR, p75NTR), spread through the lymphatic system and were taken up by lymphatic endothelial cells, reinforcing lymph node metastasis. Remarkably, sEVs enhanced lymphangiogenesis and tumor cell adhesion by inducing ERK kinase, nuclear factor (NF)-κB activation and intracellular adhesion molecule (ICAM)-1 expression in lymphatic endothelial cells. Importantly, ablation or inhibition of NGFR in sEVs reversed the lymphangiogenic phenotype, decreased lymph node metastasis and extended survival in pre-clinical models. Furthermore, NGFR expression was augmented in human lymph node metastases relative to that in matched primary tumors, and the frequency of NGFR+ metastatic melanoma cells in lymph nodes correlated with patient survival. In summary, we found that NGFR is secreted in melanoma-derived sEVs, reinforcing lymph node pre-metastatic niche formation and metastasis.


Asunto(s)
Vesículas Extracelulares , Melanoma , Animales , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Linfangiogénesis/fisiología , Metástasis Linfática , Melanoma/metabolismo , Ratones , Proteínas del Tejido Nervioso , Receptores de Factor de Crecimiento Nervioso/genética , Microambiente Tumoral
8.
Eur J Cancer ; 157: 214-224, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34536945

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) have activity across many tumor types, but activation of the immune system may also lead to significant, often steroid-refractory immune-related adverse events (irAEs). We sought to determine the activity of tocilizumab, an anti-interleukin-6 receptor monoclonal antibody, in treatment or prevention of auto-immune irAE in ICI-treated patients. METHODS: Institutional databases from 2 melanoma centers were reviewed for patients treated with ICIs and tocilizumab. Longitudinal assessment of C-reactive protein (CRP) and assessment of clinical improvement or prevention of flare of pre-existing auto-immune conditions were utilised to evaluate the benefit of tocilizumab. RESULTS: Twenty-two patients were identified. Two were treated prophylactically. Twenty were treated for management of irAEs. Median time to irAE onset from ICI start was 48 days (range 8-786) and from irAE onset to tocilizumab 32 days (range 1-192). Median time to irAE resolution from tocilizumab was 6.5 days (range 1-93). Clinical improvement/benefit was demonstrated in 21/22 patients. Median CRP prior to ICI administration was 32 mg/l (range 0.3-99), at the onset of irAE 49.5 mg/L (range 0.3-251, P = 0.047) and after tocilizumab 18 mg/L (range 0.3-18, P = 0.0011). Tocilizumab was well tolerated with self-limiting and transient toxicities in 11 (50%) patients. From start of ICI, median progression-free survival was 6 months (range 3.9-18.8) and median overall survival was not reached. CONCLUSIONS: Tocilizumab was a well-tolerated and effective steroid-sparing treatment for both management of irAEs, as well as prevention of flare of pre-existing auto-immune disorders. Prospective trials to evaluate its efficacy and impact on cancer outcomes compared with standard strategies are required.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Enfermedades Autoinmunes/prevención & control , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Interleucina-6/antagonistas & inhibidores , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/efectos adversos , Enfermedades Autoinmunes/complicaciones , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/inmunología , Proteína C-Reactiva/análisis , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/sangre , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/inmunología , Femenino , Humanos , Masculino , Melanoma/complicaciones , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Persona de Mediana Edad , Estudios Prospectivos , Estudios Retrospectivos , Neoplasias Cutáneas/complicaciones , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/inmunología , Brote de los Síntomas
9.
Nat Med ; 26(12): 1865-1877, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33077955

RESUMEN

An open question in aggressive cancers such as melanoma is how malignant cells can shift the immune system to pro-tumorigenic functions. Here we identify midkine (MDK) as a melanoma-secreted driver of an inflamed, but immune evasive, microenvironment that defines poor patient prognosis and resistance to immune checkpoint blockade. Mechanistically, MDK was found to control the transcriptome of melanoma cells, allowing for coordinated activation of nuclear factor-κB and downregulation of interferon-associated pathways. The resulting MDK-modulated secretome educated macrophages towards tolerant phenotypes that promoted CD8+ T cell dysfunction. In contrast, genetic targeting of MDK sensitized melanoma cells to anti-PD-1/anti-PD-L1 treatment. Emphasizing the translational relevance of these findings, the expression profile of MDK-depleted tumors was enriched in key indicators of a good response to immune checkpoint blockers in independent patient cohorts. Together, these data reveal that MDK acts as an internal modulator of autocrine and paracrine signals that maintain immune suppression in aggressive melanomas.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Melanoma Experimental/terapia , Midkina/genética , Microambiente Tumoral/genética , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/genética , Linfocitos T CD8-positivos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Terapia Genética , Humanos , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Midkina/farmacología , FN-kappa B/genética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Transcriptoma/genética
10.
Clin Cancer Res ; 26(16): 4414-4425, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32253232

RESUMEN

PURPOSE: We assessed the predictive potential of positron emission tomography (PET)/CT-based radiomics, lesion volume, and routine blood markers for early differentiation of pseudoprogression from true progression at 3 months. EXPERIMENTAL DESIGN: 112 patients with metastatic melanoma treated with immune checkpoint inhibition were included in our study. Median follow-up duration was 22 months. 716 metastases were segmented individually on CT and 2[18F]fluoro-2-deoxy-D-glucose (FDG)-PET imaging at three timepoints: baseline (TP0), 3 months (TP1), and 6 months (TP2). Response was defined on a lesion-individual level (RECIST 1.1) and retrospectively correlated with FDG-PET/CT radiomic features and the blood markers LDH/S100. Seven multivariate prediction model classes were generated. RESULTS: Two-year (median) overall survival, progression-free survival, and immune progression-free survival were 69% (not reached), 24% (6 months), and 42% (16 months), respectively. At 3 months, 106 (16%) lesions had progressed, of which 30 (5%) were identified as pseudoprogression at 6 months. Patients with pseudoprogressive lesions and without true progressive lesions had a similar outcome to responding patients and a significantly better 2-year overall survival of 100% (30 months), compared with 15% (10 months) in patients with true progressions/without pseudoprogression (P = 0.002). Patients with mixed progressive/pseudoprogressive lesions were in between at 53% (25 months). The blood prediction model (LDH+S100) achieved an AUC = 0.71. Higher LDH/S100 values indicated a low chance of pseudoprogression. Volume-based models: AUC = 0.72 (TP1) and AUC = 0.80 (delta-volume between TP0/TP1). Radiomics models (including/excluding volume-related features): AUC = 0.79/0.78. Combined blood/volume model: AUC = 0.79. Combined blood/radiomics model (including volume-related features): AUC = 0.78. The combined blood/radiomics model (excluding volume-related features) performed best: AUC = 0.82. CONCLUSIONS: Noninvasive PET/CT-based radiomics, especially in combination with blood parameters, are promising biomarkers for early differentiation of pseudoprogression, potentially avoiding added toxicity or delayed treatment switch.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/farmacología , Melanoma/tratamiento farmacológico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Adulto , Progresión de la Enfermedad , Femenino , Fluorodesoxiglucosa F18/administración & dosificación , Humanos , Masculino , Melanoma/sangre , Melanoma/diagnóstico por imagen , Persona de Mediana Edad , Neoplasias Primarias Secundarias , Supervivencia sin Progresión , Radiofármacos/administración & dosificación , Carga Tumoral/genética , Adulto Joven
11.
J Immunother Cancer ; 8(2)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33427690

RESUMEN

BACKGROUND: Many cancer patients do not obtain clinical benefit from immune checkpoint inhibition. Checkpoint blockade targets T cells, suggesting that tyrosine kinase activity profiling of baseline peripheral blood mononuclear cells may predict clinical outcome. METHODS: Here a total of 160 patients with advanced melanoma or non-small-cell lung cancer (NSCLC), treated with anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) or anti-programmed cell death 1 (anti-PD-1), were divided into five discovery and cross-validation cohorts. The kinase activity profile was generated by analyzing phosphorylation of peripheral blood mononuclear cell lysates in a microarray comprising of 144 peptides derived from sites that are substrates for protein tyrosine kinases. Binary grouping into patients with or without clinical benefit was based on Response Evaluation Criteria in Solid Tumors V.1.1. Predictive models were trained using partial least square discriminant analysis (PLS-DA), performance of the models was evaluated by estimating the correct classification rate (CCR) using cross-validation. RESULTS: The kinase phosphorylation signatures segregated responders from non-responders by differences in canonical pathways governing T-cell migration, infiltration and co-stimulation. PLS-DA resulted in a CCR of 100% and 93% in the anti-CTLA-4 and anti-PD1 melanoma discovery cohorts, respectively. Cross-validation cohorts to estimate the accuracy of the predictive models showed CCRs of 83% for anti-CTLA-4 and 78% or 68% for anti-PD-1 in melanoma or NSCLC, respectively. CONCLUSION: Blood-based kinase activity profiling for response prediction to immune checkpoint inhibitors in melanoma and NSCLC revealed increased kinase activity in pathways associated with T-cell function and led to a classification model with a highly accurate classification rate in cross-validation groups. The predictive value of kinase activity profiling is prospectively verified in an ongoing trial.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Adulto , Anciano , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Neoplasias/patología
12.
Cancer Res ; 79(10): 2684-2696, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30773503

RESUMEN

The immune response to melanoma improves the survival in untreated patients and predicts the response to immune checkpoint blockade. Here, we report genetic and environmental predictors of the immune response in a large primary cutaneous melanoma cohort. Bioinformatic analysis of 703 tumor transcriptomes was used to infer immune cell infiltration and to categorize tumors into immune subgroups, which were then investigated for association with biological pathways, clinicopathologic factors, and copy number alterations. Three subgroups, with "low", "intermediate", and "high" immune signals, were identified in primary tumors and replicated in metastatic tumors. Genes in the low subgroup were enriched for cell-cycle and metabolic pathways, whereas genes in the high subgroup were enriched for IFN and NF-κB signaling. We identified high MYC expression partially driven by amplification, HLA-B downregulation, and deletion of IFNγ and NF-κB pathway genes as the regulators of immune suppression. Furthermore, we showed that cigarette smoking, a globally detrimental environmental factor, modulates immunity, reducing the survival primarily in patients with a strong immune response. Together, these analyses identify a set of factors that can be easily assessed that may serve as predictors of response to immunotherapy in patients with melanoma. SIGNIFICANCE: These findings identify novel genetic and environmental modulators of the immune response against primary cutaneous melanoma and predict their impact on patient survival.See related commentary by Anichini, p. 2457.


Asunto(s)
Melanoma/genética , Neoplasias Cutáneas/genética , Regulación hacia Abajo , Humanos , Inmunoterapia , Transducción de Señal/genética
13.
Cancer Immunol Res ; 7(1): 77-85, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30425105

RESUMEN

Many metastatic melanoma patients experience durable responses to anti-PD1 and/or anti-CTLA4; however, a significant proportion (over 50%) do not benefit from the therapies. In this study, we sought to assess pretreatment liquid biopsies for biomarkers that may correlate with response to checkpoint blockade. We measured the combinatorial diversity evenness of the T-cell receptor (TCR) repertoire (the DE50, with low values corresponding to more clonality and lack of TCR diversity) in pretreatment peripheral blood mononuclear cells from melanoma patients treated with anti-CTLA4 (n = 42) or anti-PD1 (n = 38) using a multi-N-plex PCR assay on genomic DNA (gDNA). A receiver operating characteristic curve determined the optimal threshold for a dichotomized analysis according to objective responses as defined by RECIST1.1. Correlations between treatment outcome, clinical variables, and DE50 were assessed in multivariate regression models and confirmed with Fisher exact tests. In samples obtained prior to treatment initiation, we showed that low DE50 values were predictive of a longer progression-free survival and good responses to PD-1 blockade, but, on the other hand, predicted a poor response to CTLA4 inhibition. Multivariate logistic regression models identified DE50 as the only independent predictive factor for response to anti-CTLA4 therapy (P = 0.03) and anti-PD1 therapy (P = 0.001). Fisher exact tests confirmed the association of low DE50 with response in the anti-CTLA4 (P = 0.041) and the anti-PD1 cohort (P = 0.0016). Thus, the evaluation of basal TCR repertoire diversity in peripheral blood, using a PCR-based method, could help predict responses to anti-PD1 and anti-CTLA4 therapies.


Asunto(s)
Inmunoterapia , Melanoma/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Neoplasias Cutáneas/inmunología , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno CTLA-4/antagonistas & inhibidores , Femenino , Humanos , Ipilimumab/uso terapéutico , Masculino , Melanoma/tratamiento farmacológico , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Supervivencia sin Progresión , Neoplasias Cutáneas/tratamiento farmacológico
14.
Front Oncol ; 8: 178, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29896449

RESUMEN

The recent emergence of cancer immunotherapies initiated a significant shift in the clinical management of metastatic melanoma. Prior to 2011, melanoma patients only had palliative treatment solutions which offered little to no survival benefit. In 2018, with immunotherapy, melanoma patients can now contemplate durable or even complete remission. Treatment with novel immune checkpoint inhibitors, anti-cytotoxic T-lymphocyte protein 4 and anti-programmed cell death protein 1, clearly result in superior median and long-term survivals compared to standard chemotherapy; however, more than half of the patients do not respond to immune checkpoint blockade. Currently, clinicians do not have any effective way to stratify melanoma patients for immunotherapies. Research is now focusing on identifying biomarkers which could predict a patient's response prior treatment initiation (or very early during treatment course), in order to maximize therapeutic efficacy, avoid unnecessary costs, and undesirable heavy side effects for the patient. Given the rapid developments in this field and the translational potential for some of the biomarkers, we will summarize the current state of biomarker research for immunotherapy in melanoma, with an emphasis on omics technologies such as next-generation sequencing and mass cytometry (CyTOF).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...