Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1026, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310088

RESUMEN

During the Last Interglacial (LIG; 129-116 thousand years before present), the Antarctic ice sheet (AIS) was 1 to 7 m sea level equivalent smaller than at pre-industrial. Here, we assess the climatic impact of partial AIS melting at the LIG by forcing a coupled climate model with a smaller AIS and the equivalent meltwater input around the Antarctic coast. We find that changes in surface elevation induce surface warming over East Antarctica of 2 to 4 °C, and sea surface temperature (SST) increases in the Weddell and Ross Seas by up to 2 °C. Meltwater forcing causes a high latitude SST decrease and a subsurface (100-500 m) ocean temperature increase by up to 2 °C in the Ross Sea. Our results suggest that the combination of a smaller AIS and enhanced meltwater input leads to a larger sub-surface warming than meltwater alone and induces further Antarctic warming than each perturbation separately.

2.
Nature ; 615(7954): 841-847, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36991191

RESUMEN

The abyssal ocean circulation is a key component of the global meridional overturning circulation, cycling heat, carbon, oxygen and nutrients throughout the world ocean1,2. The strongest historical trend observed in the abyssal ocean is warming at high southern latitudes2-4, yet it is unclear what processes have driven this warming, and whether this warming is linked to a slowdown in the ocean's overturning circulation. Furthermore, attributing change to specific drivers is difficult owing to limited measurements, and because coupled climate models exhibit biases in the region5-7. In addition, future change remains uncertain, with the latest coordinated climate model projections not accounting for dynamic ice-sheet melt. Here we use a transient forced high-resolution coupled ocean-sea-ice model to show that under a high-emissions scenario, abyssal warming is set to accelerate over the next 30 years. We find that meltwater input around Antarctica drives a contraction of Antarctic Bottom Water (AABW), opening a pathway that allows warm Circumpolar Deep Water greater access to the continental shelf. The reduction in AABW formation results in warming and ageing of the abyssal ocean, consistent with recent measurements. In contrast, projected wind and thermal forcing has little impact on the properties, age and volume of AABW. These results highlight the critical importance of Antarctic meltwater in setting the abyssal ocean overturning, with implications for global ocean biogeochemistry and climate that could last for centuries.


Asunto(s)
Congelación , Calor , Océanos y Mares , Agua de Mar , Movimientos del Agua , Regiones Antárticas , Agua de Mar/análisis , Agua de Mar/química , Aceleración , Incertidumbre , Cambio Climático
3.
Ann Rev Mar Sci ; 14: 405-430, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34437811

RESUMEN

Ocean ventilation is the transfer of tracers and young water from the surface down into the ocean interior. The tracers that can be transported to depth include anthropogenic heat and carbon, both of which are critical to understanding future climate trajectories. Ventilation occurs in both high- and midlatitude regions, but it is the southern midlatitudes that are responsible for the largest fraction of anthropogenic heat and carbon uptake; such Southern Ocean ventilation is the focus of this review. Southern Ocean ventilation occurs through a chain of interconnected mechanisms, including the zonally averaged meridional overturning circulation, localized subduction, eddy-driven mixing along isopycnals, and lateral transport by subtropical gyres. To unravel the complex pathways of ventilation and reconcile conflicting results, here we assess the relative contribution of each of thesemechanisms, emphasizing the three-dimensional and temporally varying nature of the ventilation of the Southern Ocean pycnocline. We conclude that Southern Ocean ventilation depends on multiple processes and that simplified frameworks that explain ventilation changes through a single process are insufficient.


Asunto(s)
Clima , Movimientos del Agua , Carbono/análisis , Calor , Océanos y Mares
4.
Philos Trans A Math Phys Eng Sci ; 378(2174): 20190515, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32507085

RESUMEN

The steady lateral spreading of a free-surface viscous flow down an inclined plane around a vertex from which the channel width increases linearly with downstream distance is investigated analytically, numerically and experimentally. From the vertex the channel wall opens by an angle α to the downslope direction and the viscous fluid spreads laterally along it before detaching. The motion is modelled using lubrication theory and the distance at which the flow detaches is computed as a function of α using analytical and numerical methods. Far downslope after detachment, it is shown that the motion is accurately modelled in terms of a similarity solution. Moreover, the detachment point is well approximated by a simple expression for a broad range of opening angles. The results are corroborated through a series of laboratory experiments and the implication for the design of barriers to divert lava flows are discussed. This article is part of the theme issue 'Stokes at 200 (Part 1)'.

5.
Sci Rep ; 8(1): 6873, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720682

RESUMEN

Volcanic ash has the capacity to impact human health, livestock, crops and infrastructure, including international air traffic. For recent major eruptions, information on the volcanic ash plume has been combined with relatively coarse-resolution meteorological model output to provide simulations of regional ash dispersal, with reasonable success on the scale of hundreds of kilometres. However, to predict and mitigate these impacts locally, significant improvements in modelling capability are required. Here, we present results from a dynamic meteorological-ash-dispersion model configured with sufficient resolution to represent local topographic and convectively-forced flows. We focus on an archetypal volcanic setting, Soufrière, St Vincent, and use the exceptional historical records of the 1902 and 1979 eruptions to challenge our simulations. We find that the evolution and characteristics of ash deposition on St Vincent and nearby islands can be accurately simulated when the wind shear associated with the trade wind inversion and topographically-forced flows are represented. The wind shear plays a primary role and topographic flows a secondary role on ash distribution on local to regional scales. We propose a new explanation for the downwind ash deposition maxima, commonly observed in volcanic eruptions, as resulting from the detailed forcing of mesoscale meteorology on the ash plume.

6.
Bull Volcanol ; 77(10): 83, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26500386

RESUMEN

Mathematical models of natural processes can be used as inversion tools to predict unobserved properties from measured quantities. Uncertainty in observations and model formulation impact on the efficacy of inverse modelling. We present a general methodology, history matching, that can be used to investigate the effect of observational and model uncertainty on inverse modelling studies. We demonstrate history matching on an integral model of volcanic plumes that is used to estimate source conditions from observations of the rise height of plumes during the eruptions of Eyjafjallajökull, Iceland, in 2010 and Grímsvötn, Iceland, in 2011. Sources of uncertainty are identified and quantified, and propagated through the integral plume model. A preliminary sensitivity analysis is performed to identify the uncertain model parameters that strongly influence model predictions. Model predictions are assessed against observations through an implausibility measure that rules out model inputs that are considered implausible given the quantified uncertainty. We demonstrate that the source mass flux at the volcano can be estimated from plume height observations, but the magmatic temperature, exit velocity and exsolved gas mass fraction cannot be accurately determined. Uncertainty in plume height observations and entrainment coefficients results in a large range of plausible values of the source mass flux. Our analysis shows that better constraints on entrainment coefficients for volcanic plumes and more precise observations of plume height are required to obtain tightly constrained estimates of the source mass flux.

7.
Philos Trans A Math Phys Eng Sci ; 372(2019): 20130050, 2014 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-24891390

RESUMEN

The response of the major ocean currents to changes in wind stress forcing is investigated with a series of idealized, but eddy-permitting, model simulations. Previously, ostensibly similar models have shown considerable variation in the oceanic response to changing wind stress forcing. Here, it is shown that a major reason for these differences in model sensitivity is subtle modification of the idealized bathymetry. The key bathymetric parameter is the extent to which the strong eddy field generated in the circumpolar current can interact with the bottom water formation process. The addition of an embayment, which insulates bottom water formation from meridional eddy fluxes, acts to stabilize the deep ocean density and enhances the sensitivity of the circumpolar current. The degree of interaction between Southern Ocean eddies and Antarctic shelf processes may thereby control the sensitivity of the Southern Ocean to change.

8.
Plant Dis ; 95(9): 1099-1108, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30732055

RESUMEN

Distribution of Fusarium crown rot (FCR) and common root rot (CRR) pathogens associated with wheat (Triticum aestivum) in 91 fields in Montana were determined during the 2008 and 2009 crop seasons using real-time quantitative polymerase chain reaction (qPCR) and conventional isolation methods. Correlations (P < 0.001) were found between detection methods for both diseases. FCR was detected in 57% of the fields and CRR was detected in 93% of the fields surveyed. Percent incidence based on isolation from individual tillers was Bipolaris sorokiniana (15%), F. culmorum (13%), and F. pseudograminearum (8%). FCR populations were highly variable across the regions and were not detected in any fields from the Gb5 soil types of Judith Basin and Fergus counties. The spatial distributions of FCR and CRR were affected by elevation, soil type, and temperature. High FCR populations were associated with spring wheat crops rather than winter wheat based on qPCR (P < 0.001). FCR and CRR could produce yield losses in a range of 3 to 35%. This study is the first time that qPCR was used to survey these two pathogen groups, and the merits and weakness of qPCR relative to traditional isolation methods are discussed.

9.
Plant Dis ; 95(9): 1089-1098, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30732056

RESUMEN

Fusarium pseudograminearum and Bipolaris sorokiniana are causal agents of Fusarium crown rot and common root rot, respectively, of wheat and cause significant losses worldwide. Understanding the population dynamics between these two pathogens at late stages of wheat development is needed. The effect of F. pseudograminearum and B. sorokiniana inocula applied singly or in mixtures at seeding to spring wheat 'Hank' was measured using seedling stand, grain yield, and pathogen populations in the first internode at heading, milk, and harvest stage of wheat development using real-time quantitative polymerase chain reaction. High and low rates of F. pseudograminearum inoculum reduced B. sorokiniana populations in field trials but B. sorokiniana inoculations did not affect F. pseudograminearum populations. Populations of both pathogens increased from heading until harvest, with F. pseudograminearum colonizing lower internodes earlier than B. sorokiniana. Neither pathogen prevented infection by the other in the first internode of wheat stems. Inoculations increased incidence of infection and co-infection relative to natural settings observed for both pathogens. At the seedling stage, both fungi, individually or combined, reduced the seedling stands when compared with a noninoculated control for the three location-years. Grain yield and F. pseudograminearum populations were inversely correlated, while B. sorokiniana populations were not correlated with yield.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA