Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Sci Total Environ ; 917: 170406, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38281631

RESUMEN

We use the Community Multiscale Air Quality (CMAQv5.4) model to examine the potential impact of particulate nitrate (pNO3-) photolysis on air quality over the Northern Hemisphere. We estimate the photolysis frequency of pNO3- by scaling the photolysis frequency of nitric acid (HNO3) with an enhancement factor that varies between 10 and 100 depending on pNO3- and sea-salt aerosol concentrations and then perform CMAQ simulations without and with pNO3- photolysis to quantify the range of impacts on tropospheric composition. The photolysis of pNO3- produces gaseous nitrous acid (HONO) and nitrogen dioxide (NO2) over seawater thereby increasing atmospheric HONO and NO2 mixing ratios. HONO subsequently undergoes photolysis, producing hydroxyl radicals (OH). The increase in NO2 and OH alters atmospheric chemistry and enhances the atmospheric ozone (O3) mixing ratio over seawater, which is subsequently transported to downwind continental regions. Seasonal mean model O3 vertical column densities without pNO3- photolysis are lower than the Ozone Monitoring Instrument (OMI) retrievals, while the column densities with the pNO3- photolysis agree better with the OMI retrievals of tropospheric O3 burden. We compare model O3 mixing ratios with available surface observed data from the U.S., Japan, the Tropospheric Ozone Assessment Report - Phase II, and OpenAQ; and find that the model without pNO3- photolysis underestimates the observed data in winter and spring seasons and the model with pNO3- photolysis improves the comparison in both seasons, largely rectifying the pronounced underestimation in spring. Compared to measurements from the western U.S., model O3 mixing ratios with pNO3- photolysis agree better with observed data in all months due to the persistent underestimation of O3 without pNO3- photolysis. Compared to the ozonesonde measurements, model O3 mixing ratios with pNO3- photolysis also agree better with observed data than the model O3 without pNO3- photolysis.

2.
Atmos Chem Phys ; 23(14): 8119-8147, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37942278

RESUMEN

The fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4) is conducting a diagnostic intercomparison and evaluation of deposition simulated by regional-scale air quality models over North America and Europe. In this study, we analyze annual AQMEII4 simulations performed with the Community Multiscale Air Quality Model (CMAQ) version 5.3.1 over North America. These simulations were configured with both the M3Dry and Surface Tiled Aerosol and Gas Exchange (STAGE) dry deposition schemes available in CMAQ. A comparison of observed and modeled concentrations and wet deposition fluxes shows that the AQMEII4 CMAQ simulations perform similarly to other contemporary regional-scale modeling studies. During summer, M3Dry has higher ozone (O3) deposition velocities (Vd) and lower mixing ratios than STAGE for much of the eastern U.S. while the reverse is the case over eastern Canada and along the West Coast. In contrast, during winter STAGE has higher O3 Vd and lower mixing ratios than M3Dry over most of the southern half of the modeling domain while the reverse is the case for much of the northern U.S. and southern Canada. Analysis of the diagnostic variables defined for the AQMEII4 project, i.e. grid-scale and land-use (LU) specific effective conductances and deposition fluxes for the major dry deposition pathways, reveals generally higher summertime stomatal and wintertime cuticular grid-scale effective conductances for M3Dry and generally higher soil grid-scale effective conductances (for both vegetated and bare soil) for STAGE in both summer and winter. On a domain-wide basis, the stomatal grid-scale effective conductances account for about half of the total O3 Vd during daytime hours in summer for both schemes. Employing LU-specific diagnostics, results show that daytime Vd varies by a factor of 2 between LU categories. Furthermore, M3Dry vs. STAGE differences are most pronounced for the stomatal and vegetated soil pathway for the forest LU categories, with M3Dry estimating larger effective conductances for the stomatal pathway and STAGE estimating larger effective conductances for the vegetated soil pathway for these LU categories. Annual domain total O3 deposition fluxes differ only slightly between M3Dry (74.4 Tg/year) and STAGE (76.2 Tg/yr), but pathway-specific fluxes to individual LU types can vary more substantially on both annual and seasonal scales which would affect estimates of O3 damages to sensitive vegetation. A comparison of two simulations differing only in their LU classification scheme shows that the differences in LU cause seasonal mean O3 mixing ratio differences on the order of 1 ppb across large portions of the domain, with the differences generally largest during summer and in areas characterized by the largest differences in the fractional coverages of the forest, planted/cultivated, and grassland LU categories. These differences are generally smaller than the M3Dry vs. STAGE differences outside the summer season but have a similar magnitude during summer. Results indicate that the deposition impacts of LU differences are caused both by differences in the fractional coverages and spatial distributions of different LU categories as well as the characterization of these categories through variables like surface roughness and vegetation fraction in look-up tables used in the land-surface model and deposition schemes. Overall, the analyses and results presented in this study illustrate how the diagnostic grid-scale and LU-specific dry deposition variables adopted for AQMEII4 can provide insights into similarities and differences between the CMAQ M3Dry and STAGE dry deposition schemes that affect simulated pollutant budgets and ecosystem impacts from atmospheric pollution.

3.
Atmos Chem Phys ; 23(17): 9911-9961, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37990693

RESUMEN

A primary sink of air pollutants and their precursors is dry deposition. Dry deposition estimates differ across chemical transport models, yet an understanding of the model spread is incomplete. Here, we introduce Activity 2 of the Air Quality Model Evaluation International Initiative Phase 4 (AQMEII4). We examine 18 dry deposition schemes from regional and global chemical transport models as well as standalone models used for impact assessments or process understanding. We configure the schemes as single-point models at eight Northern Hemisphere locations with observed ozone fluxes. Single-point models are driven by a common set of site-specific meteorological and environmental conditions. Five of eight sites have at least 3 years and up to 12 years of ozone fluxes. The interquartile range across models in multiyear mean ozone deposition velocities ranges from a factor of 1.2 to 1.9 annually across sites and tends to be highest during winter compared with summer. No model is within 50 % of observed multiyear averages across all sites and seasons, but some models perform well for some sites and seasons. For the first time, we demonstrate how contributions from depositional pathways vary across models. Models can disagree with respect to relative contributions from the pathways, even when they predict similar deposition velocities, or agree with respect to the relative contributions but predict different deposition velocities. Both stomatal and nonstomatal uptake contribute to the large model spread across sites. Our findings are the beginning of results from AQMEII4 Activity 2, which brings scientists who model air quality and dry deposition together with scientists who measure ozone fluxes to evaluate and improve dry deposition schemes in the chemical transport models used for research, planning, and regulatory purposes.

4.
Atmos Environ (1994) ; 2962023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37854171

RESUMEN

We analyze hourly PM2.5 (particles with an aerodynamic diameter of ≤ 2.5 µm) concentrations measured at the U.S. Embassy in Dhaka over the 2016 - 2021 time period and find that concentrations are seasonally dependent with the highest occurring in winter and the lowest in monsoon seasons. Mean winter PM2.5 concentrations reached ~165-175 µg/m3 while monsoon concentrations remained ~30-35 µg/m3. Annual mean PM2.5 concentration reached ~5-6 times greater than the Bangladesh annual PM2.5 standard of 15 µg/m3. The number of days exceeding the daily PM2.5 standard of 65 µg/m3 in a year approached nearly 50%. Daily-mean PM2.5 concentrations remained elevated (>65 µg/m3) for more than 80 consecutive days. Night-time concentrations were greater than daytime concentrations. The comparison of results obtained from the Community Multiscale Air Quality (CMAQ) model simulations over the Northern Hemisphere using 108-km horizontal grids with observed data suggests that the model can reproduce the seasonal variation of observed data but underpredicts observed PM2.5 in winter months with a normalized mean bias of 13-32%. In the model, organic aerosol is the largest component of PM2.5, of which secondary organic aerosol plays a dominant role. Transboundary pollution has a large impact on the PM2.5 concentration in Dhaka, with an annual mean contribution of ~40 µg/m3.

5.
Atmosphere (Basel) ; 14(4): 1-19, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37234103

RESUMEN

We examine the impact of dimethylsulfide (DMS) emissions on sulfate concentrations over the continental U.S. by using the Community Multiscale Air Quality (CMAQ) model version 5.4 and performing annual simulations without and with DMS emissions for 2018. DMS emissions enhance sulfate not only over seawater but also over land, although to a lesser extent. On an annual basis, the inclusion of DMS emissions increase sulfate concentrations by 36% over seawater and 9% over land. The largest impacts over land occur in California, Oregon, Washington, and Florida, where the annual mean sulfate concentrations increase by ~25%. The increase in sulfate causes a decrease in nitrate concentration due to limited ammonia concentration especially over seawater and an increase in ammonium concentration with a net effect of increased inorganic particles. The largest sulfate enhancement occurs near the surface (over seawater) and the enhancement decreases with altitude, diminishing to 10-20% at an altitude of ~5 km. Seasonally, the largest enhancement of sulfate over seawater occurs in summer, and the lowest in winter. In contrast, the largest enhancements over land occur in spring and fall due to higher wind speeds that can transport more sulfate from seawater into land.

6.
Data Brief ; 47: 109022, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36942100

RESUMEN

The United States Environmental Protection Agency (US EPA) has developed a set of annual North American emissions data for multiple air pollutants across 18 broad source categories for 2002 through 2017. The sixteen new annual emissions inventories were developed using consistent input data and methods across all years. When a consistent method or tool was not available for a source category, emissions were estimated by scaling data from the EPA's 2017 National Emissions Inventory with scaling factors based on activity data and/or emissions control information. The emissions datasets are designed to support regional air quality modeling for a wide variety of human health and ecological applications. The data were developed to support simulations of the EPA's Community Multiscale Air Quality model but can also be used by other regional scale air quality models. The emissions data are one component of EPA's Air Quality Time Series Project which also includes air quality modeling inputs (meteorology, initial conditions, boundary conditions) and outputs (e.g., ozone, PM2.5 and constituent species, wet and dry deposition) for the Conterminous US at a 12 km horizontal grid spacing.

7.
J Geophys Res Atmos ; 127(16): 0, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36275858

RESUMEN

Several locations across the United States in non-compliance with the national standard for ground-level ozone (O3) are thought to have sizeable influences from distant extra-regional emission sources or natural stratospheric O3, which complicates design of local emission control measures. To quantify the amount of long-range transported O3 (LRT O3), its origin, and change over time, we conduct and analyze detailed sensitivity calculations characterizing the response of O3 to emissions from different source regions across the Northern Hemisphere in conjunction with multi-decadal simulations of tropospheric O3 distributions and changes. Model calculations show that the amount of O3 at any location attributable to sources outside North America varies both spatially and seasonally. On a seasonal-mean basis, during 1990-2010, LRT O3 attributable to international sources steadily increased by 0.06-0.2 ppb yr-1 at locations across the United States and arose from superposition of unequal and contrasting trends in individual source-region contributions, which help inform attribution of the trend evident in O3 measurements. Contributions of emissions from Europe steadily declined through 2010, while those from Asian emissions increased and remained dominant. Steadily rising NOx emissions from international shipping resulted in increasing contributions to LRT O3, comparable to those from Asian emissions in recent years. Central American emissions contribute a significant fraction of LRT O3 in southwestern United States. In addition to the LRT O3 attributable to emissions outside of North America, background O3 across the continental United States is comprised of a sizeable and spatially variable fraction that is of stratospheric origin (29-78%).

8.
Atmos Chem Phys ; 21(20): 1-15663, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34824572

RESUMEN

We present in this technical note the research protocol for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This research initiative is divided into two activities, collectively having three goals: (i) to define the current state of the science with respect to representations of wet and especially dry deposition in regional models, (ii) to quantify the extent to which different dry deposition parameterizations influence retrospective air pollutant concentration and flux predictions, and (iii) to identify, through the use of a common set of detailed diagnostics, sensitivity simulations, model evaluation, and reduction of input uncertainty, the specific causes for the current range of these predictions. Activity 1 is dedicated to the diagnostic evaluation of wet and dry deposition processes in regional air quality models (described in this paper), and Activity 2 to the evaluation of dry deposition point models against ozone flux measurements at multiple towers with multiyear observations (to be described in future submissions as part of the special issue on AQMEII4). The scope of this paper is to present the scientific protocols for Activity 1, as well as to summarize the technical information associated with the different dry deposition approaches used by the participating research groups of AQMEII4. In addition to describing all common aspects and data used for this multi-model evaluation activity, most importantly, we present the strategy devised to allow a common process-level comparison of dry deposition obtained from models using sometimes very different dry deposition schemes. The strategy is based on adding detailed diagnostics to the algorithms used in the dry deposition modules of existing regional air quality models, in particular archiving diagnostics specific to land use-land cover (LULC) and creating standardized LULC categories to facilitate cross-comparison of LULC-specific dry deposition parameters and processes, as well as archiving effective conductance and effective flux as means for comparing the relative influence of different pathways towards the net or total dry deposition. This new approach, along with an analysis of precipitation and wet deposition fields, will provide an unprecedented process-oriented comparison of deposition in regional air quality models. Examples of how specific dry deposition schemes used in participating models have been reduced to the common set of comparable diagnostics defined for AQMEII4 are also presented.

9.
Geosci Model Dev ; 14: 2867-2897, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34676058

RESUMEN

The Community Multiscale Air Quality (CMAQ) model version 5.3 (CMAQ53), released to the public in August 2019 and followed by version 5.3.1 (CMAQ531) in December 2019, contains numerous science updates, enhanced functionality, and improved computation efficiency relative to the previous version of the model, 5.2.1 (CMAQ521). Major science advances in the new model include a new aerosol module (AERO7) with significant updates to secondary organic aerosol (SOA) chemistry, updated chlorine chemistry, updated detailed bromine and iodine chemistry, updated simple halogen chemistry, the addition of dimethyl sulfide (DMS) chemistry in the CB6r3 chemical mechanism, updated M3Dry bidirectional deposition model, and the new Surface Tiled Aerosol and Gaseous Exchange (STAGE) bidirectional deposition model. In addition, support for the Weather Research and Forecasting (WRF) model's hybrid vertical coordinate (HVC) was added to CMAQ53 and the Meteorology-Chemistry Interface Processor (MCIP) version 5.0 (MCIP50). Enhanced functionality in CMAQ53 includes the new Detailed Emissions Scaling, Isolation and Diagnostic (DESID) system for scaling incoming emissions to CMAQ and reading multiple gridded input emission files. Evaluation of CMAQ531 was performed by comparing monthly and seasonal mean daily 8 h average (MDA8) O3 and daily PM2.5 values from several CMAQ531 simulations to a similarly configured CMAQ521 simulation encompassing 2016. For MDA8 O3, CMAQ531 has higher O3 in the winter versus CMAQ521, due primarily to reduced dry deposition to snow, which strongly reduces wintertime O3 bias (2-4 ppbv monthly average). MDA8 O3 is lower with CMAQ531 throughout the rest of the year, particularly in spring, due in part to reduced O3 from the lateral boundary conditions (BCs), which generally increases MDA8 O3 bias in spring and fall ( 0.5 µg m-3). For daily 24 h average PM2.5, CMAQ531 has lower concentrations on average in spring and fall, higher concentrations in summer, and similar concentrations in winter to CMAQ521, which slightly increases bias in spring and fall and reduces bias in summer. Comparisons were also performed to isolate updates to several specific aspects of the modeling system, namely the lateral BCs, meteorology model version, and the deposition model used. Transitioning from a hemispheric CMAQ (HCMAQ) version 5.2.1 simulation to a HCMAQ version 5.3 simulation to provide lateral BCs contributes to higher O3 mixing ratios in the regional CMAQ simulation in higher latitudes during winter (due to the decreased O3 dry deposition to snow in CMAQ53) and lower O3 mixing ratios in middle and lower latitudes year-round (due to reduced O3 over the ocean with CMAQ53). Transitioning from WRF version 3.8 to WRF version 4.1.1 with the HVC resulted in consistently higher (1.0-1.5 ppbv) MDA8 O3 mixing ratios and higher PM2.5 concentrations (0.1-0.25 µg m-3) throughout the year. Finally, comparisons of the M3Dry and STAGE deposition models showed that MDA8 O3 is generally higher with M3Dry outside of summer, while PM2.5 is consistently higher with STAGE due to differences in the assumptions of particle deposition velocities to non-vegetated surfaces and land use with short vegetation (e.g., grasslands) between the two models. For ambient NH3, STAGE has slightly higher concentrations and smaller bias in the winter, spring, and fall, while M3Dry has higher concentrations and smaller bias but larger error and lower correlation in the summer.

11.
Environ Sci Technol ; 55(8): 4504-4512, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33724832

RESUMEN

US background (US-B) ozone (O3) is the O3 that would be present in the absence of US anthropogenic (US-A) emissions. US-B O3 varies by location and season and can make up a large, sometimes dominant, portion of total O3. Typically, US-B O3 is quantified using a chemical transport model (CTM) though results are uncertain due to potential errors in model process descriptions and inputs, and there are significant differences in various model estimates of US-B O3. We develop and apply a method to fuse observed O3 with US-B O3 simulated by a regional CTM (CMAQ). We apportion the model bias as a function of space and time to US-B and US-A O3. Trends in O3 bias are explored across different simulation years and varying model scales. We found that the CTM US-B O3 estimate was typically biased low in spring and high in fall across years (2016-2017) and model scales. US-A O3 was biased high on average, with bias increasing for coarser resolution simulations. With the application of our data fusion bias adjustment method, we estimate a 28% improvement in the agreement of adjusted US-B O3. Across the four estimates, we found annual mean CTM-simulated US-B O3 ranging from 30 to 37 ppb with the spring mean ranging from 32 to 39 ppb. After applying the bias adjustment, we found annual mean US-B O3 ranging from 32 to 33 ppb with the spring mean ranging from 37 to 39 ppb.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Contaminantes Atmosféricos/análisis , Simulación por Computador , Modelos Químicos , Ozono/análisis , Estaciones del Año
12.
Environ Sci Technol ; 55(2): 882-892, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33400508

RESUMEN

On-road emissions sources degrade air quality, and these sources have been highly regulated. Epidemiological and environmental justice studies often use road proximity as a proxy for traffic-related air pollution (TRAP) exposure, and other studies employ air quality models or satellite observations. To assess these metrics' abilities to reproduce observed near-road concentration gradients and changes over time, we apply a hierarchical linear regression to ground-based observations, long-term air quality model simulations using Community Multiscale Air Quality (CMAQ), and satellite products. Across 1980-2019, observed TRAP concentrations decreased, and road proximity was positively correlated with TRAP. For all pollutants, concentrations decreased fastest at locations with higher road proximity, resulting in "flatter" concentration fields in recent years. This flattening unfolded at a relatively constant rate for NOx, whereas the flattening of CO concentration fields has slowed. CMAQ largely captures observed spatial-temporal NO2 trends across 2002-2010 but overstates the relationships between CO and elemental carbon fine particulate matter (EC) road proximity. Satellite NOx measures overstate concentration reductions near roads. We show how this perspective provides evidence that California's on-road vehicle regulations led to substantial decreases in NO2, NOx, and EC in California, with other states that adopted California's light-duty automobile standards showing mixed benefits over states that did not adopt these standards.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Estados Unidos , Emisiones de Vehículos/análisis
13.
Geosci Model Dev ; 14(9): 5751-5768, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35350842

RESUMEN

The state-of-the-science Community Multiscale Air Quality (CMAQ) Modeling System has recently been extended for hemispheric-scale modeling applications (referred to as H-CMAQ). In this study, satellite-constrained estimation of the degassing SO2 emissions from 50 volcanoes over the Northern Hemisphere is incorporated into H-CMAQ, and their impact on tropospheric sulfate aerosol ( SO 4 2 - ) levels is assessed for 2010. The volcanic degassing improves predictions of observations from the Acid Deposition Monitoring Network in East Asia (EANET), the United States Clean Air Status and Trends Network (CASTNET), and the United States Integrated Monitoring of Protected Visual Environments (IMPROVE). Over Asia, the increased SO 4 2 - concentrations were seen to correspond to the locations of volcanoes, especially over Japan and Indonesia. Over the USA, the largest impacts that occurred over the central Pacific were caused by including the Hawaiian Kilauea volcano, while the impacts on the continental USA were limited to the western portion during summertime. The emissions of the Soufrière Hills volcano located on the island of Montserrat in the Caribbean Sea affected the southeastern USA during the winter season. The analysis at specific sites in Hawaii and Florida also confirmed improvements in regional performance for modeled SO 4 2 - by including volcanoes SO2 emissions. At the edge of the western USA, monthly averaged SO 4 2 - enhancements greater than 0.1µgm-3 were noted within the boundary layer (defined as surface to 750hPa) during June- September. Investigating the change on SO 4 2 - concentration throughout the free troposphere revealed that although the considered volcanic SO2 emissions occurred at or below the middle of free troposphere (500hPa), compared to the simulation without the volcanic source, SO 4 2 - enhancements of more than 10% were detected up to the top of the free troposphere (250hPa). Our model simulations and comparisons with measurements across the Northern Hemisphere indicate that the degassing volcanic SO2 emissions are an important source and should be considered in air quality model simulations assessing background SO 4 2 - levels and their source attribution.

15.
Atmos Chem Phys ; 20(22): 13801-13815, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33365052

RESUMEN

Regional-scale air quality models are being used for studying the sources, composition, transport, transformation, and deposition of fine particulate matter (PM2.5). The availability of decadal air quality simulations provides a unique opportunity to explore sophisticated model evaluation techniques rather than relying solely on traditional operational evaluations. In this study, we propose a new approach for process-based model evaluation of speciated PM2.5 using improved complete ensemble empirical mode decomposition with adaptive noise (improved CEEMDAN) to assess how well version 5.0.2 of the coupled Weather Research and Forecasting model-Community Multiscale Air Quality model (WRF-CMAQ) simulates the time-dependent long-term trend and cyclical variations in daily average PM2.5 and its species, including sulfate (SO4), nitrate (NO3), ammonium (NH4), chloride (Cl), organic carbon (OC), and elemental carbon (EC). The utility of the proposed approach for model evaluation is demonstrated using PM2.5 data at three monitoring locations. At these locations, the model is generally more capable of simulating the rate of change in the long-term trend component than its absolute magnitude. Amplitudes of the sub-seasonal and annual cycles of total PM2.5, SO4, and OC are well reproduced. However, the time-dependent phase difference in the annual cycles for total PM2.5, OC, and EC reveals a phase shift of up to half a year, indicating the need for proper temporal allocation of emissions and for updating the treatment of organic aerosols compared to the model version used for this set of simulations. Evaluation of sub-seasonal and interannual variations indicates that CMAQ is more capable of replicating the sub-seasonal cycles than interannual variations in magnitude and phase.

16.
J Air Waste Manag Assoc ; 70(11): 1136-1147, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32749924

RESUMEN

Regional air quality models are widely being used to understand the spatial extent and magnitude of the ozone non-attainment problem and to design emission control strategies needed to comply with the relevant ozone standard through direct emission perturbations. In this study, we examine the manageable portion of ground-level ozone using two simulations of the Community Multiscale Air Quality (CMAQ) model for the year 2010 and a probabilistic analysis approach involving 29 years (1990-2018) of historical ozone observations. The modeling results reveal that the reduction in the peak ozone levels from total elimination of anthropogenic emissions within the model domain is around 13-21 ppb for the 90th-100th percentile range of the daily maximum 8-hr ozone concentrations across the contiguous United States (CONUS). Large reductions in the 4th highest 8-hr ozone are seen in the regions of West (interquartile range (IQR) of 17-33%), South (IQR 22-34%), Central (IQR 19-31%), Southeast (IQR 25-34%), and Northeast (IQR 24-37%). However, sites in the western portion of the domain generally show smaller reductions even when all anthropogenic emissions are removed, possibly due to the strong influence of global background ozone, including sources such as intercontinental ozone transport, stratospheric ozone intrusions, wildfires, and biogenic precursor emissions. Probabilistic estimates of the exceedances for several hypothetical thresholds of the 4th highest 8-hr ozone indicate that, in some areas, exceedances of such hypothetical thresholds may occur even with no anthropogenic emissions due to the ever-present atmospheric stochasticity and the current global tropospheric ozone burden. Implications: Because air pollution is intricately linked to adverse health effects, National Ambient Air Quality Standards (NAAQS) have been established for criteria pollutants to safeguard human health and the environment. Areas not in compliance with the relevant standards are required to develop plans and policies to reduce their air pollution levels. Regional-scale air quality models are currently being used routinely to inform policies to identify the emissions reduction required to meet and maintain the NAAQS throughout the country. This paper examines the feasibility of the 4th highest ozone, which is used to derive the ozone design value for NAAQS, complying with various current and hypothetical 8-hr ozone thresholds over CONUS based on the information embedded in 29 years of historical ozone observations and two modeling scenarios with and without anthropogenic emissions loading.


Asunto(s)
Contaminantes Atmosféricos/análisis , Modelos Teóricos , Ozono/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Estados Unidos
17.
Sci Total Environ ; 744: 140960, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32711327

RESUMEN

Green infrastructure (GI) implementation can benefit an urban environment by reducing the impacts of urban stormwater on aquatic ecosystems and human health. However, few studies have systematically analyzed the biophysical effects on regional meteorology and air quality that are triggered by changes in the urban vegetative coverage. In this study we use a state-of-the-art high-resolution air quality model to simulate the effects of a hypothetically feasible vegetation-focused GI implementation scenario in Kansas City, MO/KS on regional meteorology and air quality. Full year simulations are conducted for both the base case and GI land use scenarios using two different land surface models (LSMs) schemes inside the meteorological model. While the magnitudes of the changes in air quality due to the GI implementation differ using the two LSMs, the model outputs consistently showed increases in summertime PM2.5 (1.1 µg m-3, approximately 10% increase using NOAH LSM), which occurred mostly during the night and arose from the primary components, due to the cooler surface temperatures and the decreased planetary boundary layer height (PBLH). Both the maximum daily 8-hour average ozone and 1 h daily maximum O3 during summertime, decreased over the downtown areas (maximum decreases of 0.9 and 1.4 ppbv respectively). The largest ozone decreases were simulated to happen during the night, mainly caused by the titration effect of increased NOx concentration from the lower PBLH. These results highlight the region-specific non-linear process feedback from GI on regional air quality, and further demonstrate the need for comprehensive coupled meteorological-air quality modeling systems and necessity of accurate land surface model for studying these impacts.

18.
Atmos Chem Phys ; 20(6): 3373-3396, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32328089

RESUMEN

Stratospheric intrusion and trans-Pacific transport have been recognized as a potential source of tropospheric ozone over the US. The state-of-the-science Community Multiscale Air Quality (CMAQ) modeling system has recently been extended for hemispheric-scale modeling applications (referred to as H-CMAQ). In this study, H-CMAQ is applied to study the stratospheric intrusion and trans-Pacific transport during April 2010. The results will be presented in two companion papers. In this Part 1 paper, model evaluation for tropospheric ozone (O3) is presented. Observations at the surface, by ozonesondes and airplane, and by satellite across the Northern Hemisphere are used to evaluate the model performance for O3. H-CMAQ is able to capture surface and boundary layer (defined as surface to 750hPa) O3 with a normalized mean bias (NMB) of -10%; however, a systematic underestimation with an NMB up to -30% is found in the free troposphere (defined as 750-250hPa). In addition, a new air mass characterization method is developed to distinguish influences of stratosphere-troposphere transport (STT) from the effects of photochemistry on O3 levels. This method is developed based on the ratio of O3 and an inert tracer indicating stratospheric O3 to examine the importance of photochemistry, and sequential intrusion from upper layer. During April 2010, on a monthly average basis, the relationship between surface O3 mixing ratios and estimated stratospheric air masses in the troposphere show a slight negative slope, indicating that high surface O3 values are primarily affected by other factors (i.e., emissions), whereas this relationship shows a slight positive slope at elevated sites, indicating that STT has a possible impact at elevated sites. STT shows large day-to-day variations, and STT impacts can either originate from the same air mass over the entire US with an eastward movement found during early April, or stem from different air masses at different locations indicated during late April. Based on this newly established air mass characterization technique, this study can contribute to understanding the role of STT and also the implied importance of emissions leading to high surface O3. Further research focused on emissions is discussed in a subsequent paper (Part 2).

19.
Atmos Chem Phys ; 20(6): 3397-3413, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32328090

RESUMEN

The state-of-the-science Community Multiscale Air Quality (CMAQ) modeling system, which has recently been extended for hemispheric-scale modeling applications (referred to as H-CMAQ), is applied to study the trans-Pacific transport, a phenomenon recognized as a potential source of air pollution in the US, during April 2010. The results of this analysis are presented in two parts. In the previous paper (Part 1), model evaluation for tropospheric ozone (O3) was presented and an air mass characterization method was developed. Results from applying this newly established method pointed to the importance of emissions as the factor to enhance the surface O3 mixing ratio over the US. In this subsequent paper (Part 2), emission impacts are examined based on mathematically rigorous sensitivity analysis using the higher-order decoupled direct method (HDDM) implemented in H-CMAQ. The HDDM sensitivity coefficients indicate the presence of a NO x -sensitive regime during April 2010 over most of the Northern Hemisphere. By defining emission source regions over the US and east Asia, impacts from these emission sources are examined. At the surface, during April 2010, the emission impacts of the US and east Asia are comparable over the western US with a magnitude of about 3ppbv impacts on monthly mean O3 all-hour basis, whereas the impact of domestic emissions dominates over the eastern US with a magnitude of about 10ppbv impacts on monthly mean O3. The positive correlation (r = 0.63) between surface O3 mixing ratios and domestic emission impacts is confirmed. In contrast, the relationship between surface O3 mixing ratios and emission impacts from east Asia exhibits a flat slope when considering the entire US. However, this relationship has strong regional differences between the western and eastern US; the western region exhibits a positive correlation (r = 0.36-0.38), whereas the latter exhibits a flat slope (r <0.1). Based on the comprehensive evaluation of H-CMAQ, we extend the sensitivity analysis for O3 aloft. The results reveal the significant impacts of emissions from east Asia on the free troposphere (defined as 750 to 250hPa) over the US (impacts of more than 5ppbv) and the dominance of stratospheric air mass on upper model layer (defined as 250 to 50hPa) over the US (impacts greater than 10ppbv). Finally, we estimate changes of trans-Pacific transport by taking into account recent emission trends from 2010 to 2015 assuming the same meteorological condition. The analysis suggests that the impact of recent emission changes on changes in the contribution of trans-Pacific transport to US O3 levels was insignificant at the surface level and was small (less than 1ppbv) over the free troposphere.

20.
Atmos Chem Phys ; 20(3): 1627-1639, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32117469

RESUMEN

Regional-scale air pollution models are routinely being used world-wide for research, forecasting air quality, and regulatory purposes. It is well recognized that there are both reducible (systematic) and irreducible (unsystematic) errors in the meteorology-atmospheric chemistry modeling systems. The inherent (random) uncertainty stems from our inability to properly characterize stochastic variations in atmospheric dynamics and chemistry, and from the incommensurability associated with comparisons of the volume-averaged model estimates with point measurements. Because these stochastic variations are not being explicitly simulated in the current generation of regional-scale meteorology-air quality models, one should expect to find differences between the model estimates and corresponding observations. This paper presents an observation-based methodology to determine the expected errors from current generation regional air quality models even when the model design, physics, chemistry, and numerical analysis, as well as its input data, were "perfect". To this end, the short-term synoptic-scale fluctuations embedded in the daily maximum 8-hr ozone time series are separated from the longer-term forcing using a simple recursive moving average filter. The inherent uncertainty attributable to the stochastic nature of the atmosphere is determined based on 30+ years of historical ozone time series data measured at various monitoring sites in the contiguous United States. The results reveal that the expected root mean square error at the median and 95th percentile is about 2 ppb and 5 ppb, respectively, even for "perfect" air quality models driven with "perfect" input data. Quantitative estimation of the limit to the model's accuracy will help in objectively assessing the current state-of-the-science in regional air pollution models, measuring progress in their evolution, and providing meaningful and firm targets for improvements in their accuracy relative to ambient measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...