Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Chemother Pharmacol ; 44(4): 327-34, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10447581

RESUMEN

Trofosfamide and its congeners ifosfamide and cyclophosphamide are cell-cycle-nonspecific alkylating agents that undergo bioactivation catalyzed by liver cytochrome P450 (CYP) enzymes. Two NADPH-dependent metabolic routes for the anticancer drug trofosfamide, i.e., 4-hydroxylation and N-dechloroethylation, were studied in human liver microsomes and in seven recombinant human CYP isoforms (i.e., CYP1A1, 1A2, 2A6, 2B6, 2D6, 2E1, and 3A4-OR) to identify the CYP enzymes involved. Recombinant human CYP3A4 and CYP2B6 exhibited catalytic activity with respect to both pathways of trofosfamide. Enzyme kinetic analyses revealed the dominant role of human CYP3A4 in 4-hydroxylation and N-dechloroethylation of trofosfamide. This was confirmed by the observation that only the CYP3A4 contents of five samples of human liver microsomes correlated with both pathways of trofosfamide. Furthermore, ketoconazole, a selective inhibitor of CYP3A4, substantially inhibited microsomal trofosfamide 4-hydroxylation and N-dechloroethylation (50% inhibitory concentration < 1 microM for both reactions). The present study indicates that human liver microsomal CYP3A4 preferentially catalyzes the two NADPH- dependent metabolic routes of trofosfamide, which emphasizes the necessity for awareness of potential interactions with any coadministered drugs that are CYP3A4 substrates.


Asunto(s)
Antineoplásicos Alquilantes/metabolismo , Hidrocarburo de Aril Hidroxilasas , Ciclofosfamida/análogos & derivados , Sistema Enzimático del Citocromo P-450/metabolismo , Microsomas Hepáticos/enzimología , Oxigenasas de Función Mixta/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Alquilación , Antifúngicos/farmacología , Antineoplásicos Alquilantes/farmacocinética , Linfocitos B/enzimología , Biotransformación , Línea Celular Transformada , Ciclofosfamida/metabolismo , Ciclofosfamida/farmacocinética , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP3A , Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/biosíntesis , ADN Complementario/genética , Humanos , Hidroxilación , Cetoconazol/farmacología , Cinética , Oxigenasas de Función Mixta/antagonistas & inhibidores , Oxigenasas de Función Mixta/biosíntesis , Oxidación-Reducción , Oxidorreductasas N-Desmetilantes/antagonistas & inhibidores , Oxidorreductasas N-Desmetilantes/biosíntesis
2.
Ann Oncol ; 10(3): 335-8, 1999 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10355579

RESUMEN

BACKGROUND: Accumulation of the cytosine arabinoside (ara-C) metabolite ara-C-triphosphate (ara-CTP) in leukemic blast cells is considered to be the main determinant of ara-C cytotoxicity in vitro and in vivo. Retinoids such as all-trans-retinoic acid (ATRA) have been shown to increase the sensitivity of acute myelogenous leukemic (AML) blast cells to ara-C. To investigate the mechanism of this sensitisation, the hypothesis was tested that ATRA augments cellular ara-CTP levels in human-derived myelogenous leukemia HL-60 cells. MATERIALS AND METHODS: The effect of ATRA and 13-cis-retinoic acid on ara-CTP accumulation and ara-C-induced apoptosis was studied. Ara-CTP levels were measured by high-performance liquid chromatography (HPLC), cytotoxicity by the tetrazolium (MTT) assay, and apoptosis by occurrence of DNA fragmentation (gel electrophoresis), cell shrinkage and DNA loss (flow cytometry). RESULTS: Pretreatment of HL-60 cells with ATRA (0.01-1 microM) caused a significant decrease in intracellular ara-CTP levels; e.g., incubation for 72 hours with ATRA 1 microM prior to one hour ara-C 10 microM reduced ara-CTP levels to 41% +/- 4% of control. Similar results were obtained after preincubation with 13-cis-retinoic acid. In spite of decreased ara-CTP levels, the cytotoxicity of the combination was supraadditive and ATRA augmented ara-C-induced apoptosis. CONCLUSION: At therapeutically relevant concentrations ATRA increased ara-C cytotoxicity and ara-C induced apoptosis but this augmentation is not the corollary of elevated ara-CTP levels. The feasibility of ara-C treatment optimisation via strategies other than those involving elevation of ara-CTP levels should be investigated further.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Trifosfato de Arabinofuranosil Citosina/metabolismo , Citarabina/administración & dosificación , Células HL-60/efectos de los fármacos , Tretinoina/administración & dosificación , Análisis de Varianza , Antimetabolitos Antineoplásicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/análisis , Apoptosis/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos , Electroforesis en Gel de Agar , Citometría de Flujo , Células HL-60/citología , Células HL-60/metabolismo , Humanos , Tretinoina/análisis , Células Tumorales Cultivadas/efectos de los fármacos , Células Tumorales Cultivadas/metabolismo
3.
Int J Clin Pharmacol Ther ; 36(5): 246-52, 1998 May.
Artículo en Inglés | MEDLINE | ID: mdl-9629987

RESUMEN

Ifosfamide (IFO) requires metabolic activation by hydroxylation of the ring system to exert cytotoxic activity. A second metabolic pathway produces the cytostatically inactive metabolites 2-dechloroethyl-ifosfamide (2-D-IFO) and 3-dechloroethyl-ifosfamide (3-D-IFO) under release of chloroacetaldehyde. This side-chain metabolism has been suggested to be involved in CNS- and renal toxicity. The total urinary excretion of ifosfamide and its metabolites was investigated during 23 cycles in 22 children at doses ranging from 400 mg/m2 to 3 g/m2. The kinetics of the excretion were compared following short-term and continuous ifosfamide infusion at a dosage of 3 g/m2. IFO and side-chain metabolites were analyzed by gas chromatography, the active metabolites by indirect determination of acrolein (ACR) and IFO mustard (IFO-M) with the NBP test. 59+/-15% of the applied dose could be recovered in the urine, 23+/-9% as unmetabolized IFO. The main metabolite was 3-D-IFO (14+/-4%) followed by isophosphoramide mustard (IFO-M) (13+/-4%) and 2-D-IFO (8+/-3%). Neither the total amount recovered nor the excretion kinetics of ifosfamide and side-chain metabolites showed obvious schedule dependency. The excretion kinetics of side-chain metabolites as well as unmetabolized IFO were nearly superimposable on short-term and continuous infusion. Even after 1-hour infusion there was a lag of 3 - 6 hours until dechloroethylation became relevant. Therefore, differences in toxicity and efficacy cannot be explained by an influence of the application time on the metabolic profile of ifosfamide.


Asunto(s)
Antineoplásicos Alquilantes/uso terapéutico , Ifosfamida/uso terapéutico , Neoplasias/tratamiento farmacológico , Acetaldehído/análogos & derivados , Acetaldehído/orina , Acroleína/orina , Adolescente , Adulto , Antineoplásicos Alquilantes/orina , Niño , Femenino , Humanos , Ifosfamida/administración & dosificación , Ifosfamida/análogos & derivados , Ifosfamida/orina , Infusiones Intravenosas , Riñón/efectos de los fármacos , Masculino , Mostazas de Fosforamida/orina
4.
Cancer Chemother Pharmacol ; 40(1): 45-50, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-9137528

RESUMEN

To contribute to effective and safe outpatient treatment, we investigated the metabolism of trofosfamide (Trofo) after oral administration. We analyzed Trofo metabolism in 15 patients aged from 3 to 73 years who were treated with 150 or 250 mg/m2 Trofo in combination with etoposide. Serum samples were collected with 13 patients after oral administration, and Trofo and its dechloroethylated metabolites were quantified by gas chromatography. Urine samples were collected from five patients and analyzed by same method. Ifosfamide (Ifo) was the main metabolite in serum and urine (AUCTrofo:AUCIfo 1:13), whereas cyclophosphamide (Cyclo) was formed in smaller amounts (AUC(Ifo):AUC(Cyclo) 18:1). Ifo and Cyclo were further oxidized in the chloroethyl side chains to form 2- and 3-dechlorethylifosfamide in varying quantities. The urinary excretion of Trofo and its dechloroethylated metabolites amounted to about 10% of the total dose. Our results confirm former in vitro observations about the metabolism of Trofo. The main side-chain metabolites Ifo and Cyclo can be further activated by oxidation and formation of their respective phosphoramide mustards. Hence, Trofo is an interesting agent for oral chemotherapy.


Asunto(s)
Antineoplásicos Alquilantes/farmacocinética , Ciclofosfamida/análogos & derivados , Adolescente , Adulto , Anciano , Niño , Preescolar , Ciclofosfamida/farmacocinética , Femenino , Humanos , Masculino , Persona de Mediana Edad
5.
Klin Padiatr ; 208(4): 151-9, 1996.
Artículo en Alemán | MEDLINE | ID: mdl-8926681

RESUMEN

BACKGROUND: Cellular uptake and intracellular phosphorylation to the nucleotide cytosine arabinoside-triphosphate (Ara-CTP) is the precondition for the cytostatic effect of cytarabine. The pharmacokinetics of Ara-CTP in leukemic cells was reported to be of clinical importance in adult nonlymphoblastic leukemia. Therefore, the role of intracellular Ara-CTP formation and retention was investigated in blast cells from children with acute lymphoblastic leukemia (ALL). PATIENTS AND METHODS: At the time of diagnosis, peripheral or bone marrow blast cells from 41 children with ALL and 13 with relapsed ALL were incubated in Ara-C containing medium (1 hour, 1 or 3 micrograms/ml) followed by reincubation in Ara-C free medium (3 h). Intracellular Ara CTP formation and Ara-CTP retention were determined. MAIN RESULTS: Ara-CTP formation did not show marked differences between the different immunological subtypes. Ara-CTP retention, however, was significantly lower in T-ALL (37 +/- 15%, n = 8) compared to non-T-ALL (67 +/- 25%, n = 33; p < 0.003). Ara-CTP retention was also significantly different in children with and without persistence of peripheral blast cells after one week of prednison treatment (71 +/- 30%, n = 9 and 53 +/- 19%, n = 21; p = 0.031) as well as in children with and without complete bone marrow remission on day 15 of the ALL-BFM treatment protocol (66 +/- 17%, n = 19 and 43 +/- 18%, n = 11; p = 0.018). Ara-CTP retention was inversely correlated with the risk groups defined by the ALL-BFM treatment protocols (standard 79 +/- 29, intermediate 59 +/- 25, high risk 47 +/- 21%). A trend towards lower Ara-CTP retention was observed in relapsed leukemias (relapsed non-T-ALL 51 +/- 17%, p = 0.061). The difference in the probability of event free survival (following risk group adapted treatment according to ALL-BFM trials) between children with high (> or = 72%; 0.92 +/- 0.08) and low (< 72%: 0.58 +/- 0.15) Ara-CTP retention up to now did not reach statistical significance (p = 0.12). CONCLUSIONS: The more rapid decrease of cellular Ara-CTP in T-cell leukemia and children at higher clinical risk groups provide a pharmacokinetic rationale for prolonged infusion duration as an alternative to the intensification by dose escalation alone.


Asunto(s)
Trifosfato de Arabinofuranosil Citosina/farmacocinética , Crisis Blástica/sangre , Citarabina/farmacocinética , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Adolescente , Adulto , Crisis Blástica/tratamiento farmacológico , Crisis Blástica/mortalidad , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Niño , Preescolar , Citarabina/administración & dosificación , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Femenino , Humanos , Lactante , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/mortalidad , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Pronóstico , Inducción de Remisión
6.
Med Pediatr Oncol ; 26(6): 397-404, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8614376

RESUMEN

The importance of the cellular pharmacokinetics of cytarabine triphosphate (ara-CTP) with regard to therapeutic efficacy is well established. In vitro and in vivo monitoring of pharmacokinetic parameters of leukemic blast cells were initiated in order to contribute to the pharmacological basis of optimal ara-C treatment strategies. Peripheral or bone marrow blast cells from 66 leukemic patients [51 acute myelogenous leukemia (ALL), 15 acute lymphoblastic leukemia (AML) were separated and incubated with ara-C for 1 hour and in ara-C-free medium for another 3 hours, and the intracellular formation and retention of ara-CTP was measured. In eight children who received continuous ara-C infusion for induction treatment, the ara-CTP concentration in circulating blast cells was monitored in vivo. The in vitro values observed in this assay corresponded to the cellular levels monitored in vivo. The ara-CTP retention differed clearly among the individual groups, as classified by immunophenotype at the time of the initial diagnosis: non-T-ALL 67+/-25% (x+/-SD, n=33), T-ALL 37+/-15% (n=8), and AML 34+/-18% (n=14). The difference in ara-CTP retention between non-T-All and AML (P<0.05) as well as T-ALL (P<0.05) was significant. There was a tendency toward lower ara-CTP retention in relapsed as compared with newly diagnosed ALL, but the difference was not significant. The maximal accumulation of ara-CTP (after 1 hour incubation) was comparable in AML, T-ALL, non-T-ALL, and blast cells from children in relapse. The observed similarity of cellular accumulation in all groups and the significantly more rapid decrease in T-ALL and AML provide the pharmacokinetic rationale supporting the prolonged infusion duration for ara-C in these subgroups as an alternative to the intensification by high-dose ara-C schedules with short-term infusion.


Asunto(s)
Trifosfato de Arabinofuranosil Citosina/farmacocinética , Células Sanguíneas/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Adolescente , Trifosfato de Arabinofuranosil Citosina/uso terapéutico , Médula Ósea/metabolismo , Médula Ósea/patología , Linfoma de Burkitt/sangre , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/patología , Células Cultivadas , Niño , Preescolar , Medios de Cultivo , Esquema de Medicación , Monitoreo de Drogas , Humanos , Inmunofenotipificación , Infusiones Intravenosas , Líquido Intracelular/metabolismo , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/patología , Leucemia-Linfoma de Células T del Adulto/sangre , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Leucemia-Linfoma de Células T del Adulto/patología , Recurrencia Local de Neoplasia/sangre , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...