Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 24(15): e202300228, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37314020

RESUMEN

Riboswitches are bacterial mRNA structure elements regulating either transcription or translation of downstream genes in response to high-affinity binding of a low molecular weight ligand. Among this diverse group of RNA structures, the class-I preQ1 sensing riboswitches (QSW) stand out since they are the smallest known natural riboswitches. The preQ1 sensing riboswitches combine ligand sensing and functional control within a single structural domain that adopts a pseudoknot conformation encapsulating both the cognate ligand and the ribosome binding site. preQ1 sensing riboswitches also occur in thermophilic bacteria. In these cases, their tertiary structures have to be stable even at temperatures above 60 °C to be functional at the organism's optimal growth temperatures. Despite the available high-resolution structures of these riboswitches, it is not yet understood which tertiary interactions are primarily responsible for their exceptional temperature stability. Here, we show that an intricate three-dimensional network of non-canonical interactions involving various non-neighboring nucleobases is the origin of the riboswitch's thermostability. An essential part of this network is a so far undetected stably protonated cytidine. It is characterized by an exceptional high pKA value of >9.7 and could be unambiguously identified through the application of modern heteronuclear detected NMR experiments. Thus, the presence or absence of a single proton can modulate the formation of an RNA tertiary structure and ligand binding capacity under extreme environmental conditions.


Asunto(s)
Riboswitch , Ligandos , ARN/química , Bacterias/genética , Conformación de Ácido Nucleico
2.
Angew Chem Int Ed Engl ; 61(46): e202205858, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36115062

RESUMEN

SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Proteoma , Ligandos , Diseño de Fármacos
3.
Biomol NMR Assign ; 16(1): 17-25, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35178672

RESUMEN

The ongoing pandemic of the respiratory disease COVID-19 is caused by the SARS-CoV-2 (SCoV2) virus. SCoV2 is a member of the Betacoronavirus genus. The 30 kb positive sense, single stranded RNA genome of SCoV2 features 5'- and 3'-genomic ends that are highly conserved among Betacoronaviruses. These genomic ends contain structured cis-acting RNA elements, which are involved in the regulation of viral replication and translation. Structural information about these potential antiviral drug targets supports the development of novel classes of therapeutics against COVID-19. The highly conserved branched stem-loop 5 (SL5) found within the 5'-untranslated region (5'-UTR) consists of a basal stem and three stem-loops, namely SL5a, SL5b and SL5c. Both, SL5a and SL5b feature a 5'-UUUCGU-3' hexaloop that is also found among Alphacoronaviruses. Here, we report the extensive 1H, 13C and 15N resonance assignment of the 37 nucleotides (nts) long sequence spanning SL5b and SL5c (SL5b + c), as basis for further in-depth structural studies by solution NMR spectroscopy.


Asunto(s)
COVID-19 , SARS-CoV-2 , Regiones no Traducidas 5' , Humanos , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular
4.
Sci Rep ; 11(1): 23852, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903826

RESUMEN

Cytochrome bd-type oxidases play a crucial role for survival of pathogenic bacteria during infection and proliferation. This role and the fact that there are no homologues in the mitochondrial respiratory chain qualify cytochrome bd as a potential antimicrobial target. However, few bd oxidase selective inhibitors have been described so far. In this report, inhibitory effects of Aurachin C (AurC-type) and new Aurachin D (AurD-type) derivatives on oxygen reductase activity of isolated terminal bd-I, bd-II and bo3 oxidases from Escherichia coli were potentiometrically measured using a Clark-type electrode. We synthesized long- (C10, decyl or longer) and short-chain (C4, butyl to C8, octyl) AurD-type compounds and tested this set of molecules towards their selectivity and potency. We confirmed strong inhibition of all three terminal oxidases for AurC-type compounds, whereas the 4(1H)-quinolone scaffold of AurD-type compounds mainly inhibits bd-type oxidases. We assessed a direct effect of chain length on inhibition activity with highest potency and selectivity observed for heptyl AurD-type derivatives. While Aurachin C and Aurachin D are widely considered as selective inhibitors for terminal oxidases, their structure-activity relationship is incompletely understood. This work fills this gap and illustrates how structural differences of Aurachin derivatives determine inhibitory potency and selectivity for bd-type oxidases of E. coli.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de la Membrana Bacteriana Externa/metabolismo , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/metabolismo , Unión Proteica , Quinolonas/química , Quinolonas/farmacología
5.
Nucleic Acids Res ; 49(19): 11337-11349, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34614185

RESUMEN

In bacteria RNA gene regulatory elements refold dependent on environmental clues between two or more long-lived conformational states each associated with a distinct regulatory state. The refolding kinetics are strongly temperature-dependent and especially at lower temperatures they reach timescales that are biologically not accessible. To overcome this problem, RNA chaperones have evolved. However, the precise molecular mechanism of how these proteins accelerate RNA refolding reactions remains enigmatic. Here we show how the RNA chaperone StpA of Escherichia coli leads to an acceleration of a bistable RNA's refolding kinetics through the selective destabilization of key base pairing interactions. We find in laser assisted real-time NMR experiments on photocaged bistable RNAs that the RNA chaperone leads to a two-fold increase in refolding rates at low temperatures due to reduced stability of ground state conformations. Further, we can show that upon interaction with StpA, base pairing interactions in the bistable RNA are modulated to favor refolding through the dominant pseudoknotted transition pathway. Our results shed light on the molecular mechanism of the interaction between RNA chaperones and bistable RNAs and are the first step into a functional classification of chaperones dependent on their biophysical mode of operation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue del ARN , ARN Bacteriano/metabolismo , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Unión Proteica , Estabilidad del ARN , ARN Bacteriano/química , ARN Bacteriano/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Termodinámica
6.
Biomol NMR Assign ; 15(2): 467-474, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34453696

RESUMEN

The stem-loop (SL1) is the 5'-terminal structural element within the single-stranded SARS-CoV-2 RNA genome. It is formed by nucleotides 7-33 and consists of two short helical segments interrupted by an asymmetric internal loop. This architecture is conserved among Betacoronaviruses. SL1 is present in genomic SARS-CoV-2 RNA as well as in all subgenomic mRNA species produced by the virus during replication, thus representing a ubiquitous cis-regulatory RNA with potential functions at all stages of the viral life cycle. We present here the 1H, 13C and 15N chemical shift assignment of the 29 nucleotides-RNA construct 5_SL1, which denotes the native 27mer SL1 stabilized by an additional terminal G-C base-pair.


Asunto(s)
Regiones no Traducidas 5' , Resonancia Magnética Nuclear Biomolecular , SARS-CoV-2/genética , Conformación de Ácido Nucleico , ARN Lider Empalmado
8.
Angew Chem Int Ed Engl ; 60(35): 19191-19200, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34161644

RESUMEN

SARS-CoV-2 contains a positive single-stranded RNA genome of approximately 30 000 nucleotides. Within this genome, 15 RNA elements were identified as conserved between SARS-CoV and SARS-CoV-2. By nuclear magnetic resonance (NMR) spectroscopy, we previously determined that these elements fold independently, in line with data from in vivo and ex-vivo structural probing experiments. These elements contain non-base-paired regions that potentially harbor ligand-binding pockets. Here, we performed an NMR-based screening of a poised fragment library of 768 compounds for binding to these RNAs, employing three different 1 H-based 1D NMR binding assays. The screening identified common as well as RNA-element specific hits. The results allow selection of the most promising of the 15 RNA elements as putative drug targets. Based on the identified hits, we derive key functional units and groups in ligands for effective targeting of the RNA of SARS-CoV-2.


Asunto(s)
Genoma , ARN Viral/metabolismo , SARS-CoV-2/genética , Bibliotecas de Moléculas Pequeñas/metabolismo , Evaluación Preclínica de Medicamentos , Ligandos , Estructura Molecular , Conformación de Ácido Nucleico , Espectroscopía de Protones por Resonancia Magnética , ARN Viral/química , Bibliotecas de Moléculas Pequeñas/química
9.
Biomol NMR Assign ; 15(2): 335-340, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33928512

RESUMEN

The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5'-untranslated region (5'-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive 1H, 13C, 15N and 31P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy.


Asunto(s)
Regiones no Traducidas 5' , Resonancia Magnética Nuclear Biomolecular , SARS-CoV-2/genética , Secuencias Invertidas Repetidas/genética
10.
Biomol NMR Assign ; 15(1): 203-211, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33484403

RESUMEN

The SARS-CoV-2 (SCoV-2) virus is the causative agent of the ongoing COVID-19 pandemic. It contains a positive sense single-stranded RNA genome and belongs to the genus of Betacoronaviruses. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are potential antiviral drug targets. Major parts of these sequences are highly conserved among Betacoronaviruses and contain cis-acting RNA elements that affect RNA translation and replication. The 31 nucleotide (nt) long highly conserved stem-loop 5a (SL5a) is located within the 5'-untranslated region (5'-UTR) important for viral replication. SL5a features a U-rich asymmetric bulge and is capped with a 5'-UUUCGU-3' hexaloop, which is also found in stem-loop 5b (SL5b). We herein report the extensive 1H, 13C and 15N resonance assignment of SL5a as basis for in-depth structural studies by solution NMR spectroscopy.


Asunto(s)
Regiones no Traducidas 5' , Proteasas Similares a la Papaína de Coronavirus/química , Espectroscopía de Resonancia Magnética , SARS-CoV-2/química , SARS-CoV-2/genética , Isótopos de Carbono , Genes Virales , Hidrógeno , Isótopos de Nitrógeno , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína
11.
Magn Reson (Gott) ; 2(1): 291-320, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37904763

RESUMEN

The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.

12.
Chemistry ; 27(10): 3292-3296, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33259638

RESUMEN

Chemical probes that covalently modify proteins of interest are powerful tools for the research of biological processes. Important in the design of a probe is the choice of reactive group that forms the covalent bond, as it decides the success of a probe. However, choosing the right reactive group is not a simple feat and methodologies for expedient screening of different groups are needed. We herein report a modular approach that allows easy coupling of a reactive group to a ligand. α-Nucleophile ligands are combined with 2-formylphenylboronic acid derived reactive groups to form iminoboronate probes that selectively label their target proteins. A transimination reaction on the labeled proteins with an α-amino hydrazide provides further modification, for example to introduce a fluorophore.

13.
Nucleic Acids Res ; 48(22): 12415-12435, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33167030

RESUMEN

The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5' end, the ribosomal frameshift segment and the 3'-untranslated region (3'-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.


Asunto(s)
COVID-19/prevención & control , Espectroscopía de Resonancia Magnética/métodos , Conformación de Ácido Nucleico , ARN Viral/química , SARS-CoV-2/genética , Regiones no Traducidas 3'/genética , Secuencia de Bases , COVID-19/epidemiología , COVID-19/virología , Sistema de Lectura Ribosómico/genética , Genoma Viral/genética , Humanos , Modelos Moleculares , Pandemias , SARS-CoV-2/fisiología
14.
ChemMedChem ; 15(14): 1262-1271, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32159929

RESUMEN

The respiratory chain of Escherichia coli contains two different types of terminal oxidase that are differentially regulated as a response to changing environmental conditions. These oxidoreductases catalyze the reduction of molecular oxygen to water and contribute to the proton motive force. The cytochrome bo3 oxidase (cyt bo3 ) acts as the primary terminal oxidase under atmospheric oxygen levels, whereas the bd-type oxidase is most abundant under microaerobic conditions. In E. coli, both types of respiratory terminal oxidase (HCO and bd-type) use ubiquinol-8 as electron donor. Here, we assess the inhibitory potential of newly designed and synthesized 3-alkylated Lawson derivatives through L-proline-catalyzed three-component reductive alkylation (TCRA). The inhibitory effects of these Lawson derivatives on the terminal oxidases of E. coli (cyt bo3 and cyt bd-I) were tested potentiometrically. Four compounds were able to reduce the oxidoreductase activity of cyt bo3 by more than 50 % without affecting the cyt bd-I activity. Moreover, two inhibitors for both cyt bo3 and cyt bd-I oxidase could be identified. Based on molecular-docking simulations, we propose binding modes of the new Lawson inhibitors. The molecular fragment benzyl enhances the inhibitory potential and selectivity for cyt bo3 , whereas heterocycles reduce this effect. This work extends the library of 3-alkylated Lawson derivatives as selective inhibitors for respiratory oxidases and provides molecular probes for detailed investigations of the mechanisms of respiratory-chain enzymes of E. coli.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Escherichia coli/enzimología , Naftoquinonas/farmacología , Oxidorreductasas/antagonistas & inhibidores , Alquilación , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/metabolismo , Estructura Molecular , Naftoquinonas/síntesis química , Naftoquinonas/química , Oxidorreductasas/metabolismo , Relación Estructura-Actividad
15.
Chem Commun (Camb) ; 55(14): 2050-2053, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30688318

RESUMEN

Chemical probes that label proteins of interest in the context of complex biological samples are useful research tools. The reactive group that forms the covalent bond with the target protein has a large effect on the selectivity and selecting the appropriate group determines the success of a probe. We here report the development of a combinatorial methodology based on imine chemistry that enables straightforward in situ synthesis and screening of different reactive groups and thereby simplifies identification of probe leads. Using our methodology, we found chemical probes targeting BirA and chloramphenicol acetyl transferase, two proteins associated with antibacterial activity and resistance.

16.
ACS Omega ; 3(6): 7077-7085, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-30259005

RESUMEN

Previously, we have synthesized a diverse range of 2,5-furandicarboxylic acid (FDCA)-based semiaromatic polyamides via enzymatic polymerization. This novel class of polymers are biobased alternatives to polyphthalamides, which are petrol-based semiaromatic polyamides. From a commercial perspective, they have interesting properties as high-performance materials and engineering thermoplastics. It is even more appealing to explore novel FDCA-based polyamides with added functionality, for the development of sustainable functional materials. Here, a set of FDCA-based heteroatom polyamides have been successfully produced via Novozyme 435 (N435)-catalyzed polymerization of biobased dimethyl 2,5-furandicarboxylate with (potentially)heteroatom diamines, namely, 4,9-dioxa-1,12-dodecanediamine (DODA), diethylenetriamine, and 3,3-ethylenediiminopropylamine. We performed the enzymatic polymerization in solution and bulk. The latter approach is more sustainable and results in higher molecular weight products. Among the tested heteroatom diamines, N435 shows the highest catalytic activity toward DODA. Furthermore, we find that all obtained FDCA-based heteroatom polyamides are amorphous materials with a relatively high thermal stability. These heteroatom polyamides display a glass-transition temperature ranging from 41 to 107 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...