Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0298866, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38687720

RESUMEN

We demonstrate that applying electric field pulses to hepatocytes, in vitro, in the presence of enhanced green fluorescent protein (EGFP)-expressing adeno-associated virus (AAV8) vectors reduces the viral dosage required for a given transduction level by more than 50-fold, compared to hepatocytes exposed to AAV8-EGFP vectors without electric field pulse exposure. We conducted 48 experimental observations across 8 exposure conditions in standard well plates. The electric pulse exposures involved single 80-ms pulses with 375 V/cm field intensity. Our study suggests that electric pulse exposure results in enhanced EGFP expression in cells, indicative of increased transduction efficiency. The enhanced transduction observed in our study, if translated successfully to an in vivo setting, would be a promising indication of potential reduction in the required dose of AAV vectors. Understanding the effects of electric field pulses on AAV transduction in vitro is an important preliminary step.


Asunto(s)
Dependovirus , Vectores Genéticos , Proteínas Fluorescentes Verdes , Transducción Genética , Dependovirus/genética , Humanos , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Vectores Genéticos/genética , Células Hep G2 , Hepatocitos/metabolismo , Electricidad
2.
Xenotransplantation ; 29(3): e12747, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35384085

RESUMEN

Although human islet transplantation has proven to provide clinical benefits, especially the near complete amelioration of hypoglycemia, the supply of human islets is limited and insufficient to meet the needs of all people that could benefit from islet transplantation. Porcine islets, secreting insulin nearly identical to that of human insulin, have been proposed as a viable supply of unlimited islets. Further, encapsulation of the porcine islets has been shown to reduce or eliminate the use of immunosuppressive therapy that would be required to prevent rejection of the foreign islet tissue. The goal of the current study was to determine the long-term safety and efficacy of agarose encapsulated porcine islets (macrobeads) in diabetic cynomolgus macaques, in a study emulating a proposed IND trial in which daily exogenous insulin therapy would be reduced by 50% with no loss of glucose regulation. Four of six animals implanted with macrobeads demonstrated ≥ 30% reduction in insulin requirements in year 1 of follow-up. Animals were followed for 2, 3.5, and 7.4 years with no serious adverse events, mortality or evidence of pathogen transmission. This study supports the continued pursuit of encapsulated porcine islet therapy as a promising treatment option for diabetes mellitus.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Animales , Diabetes Mellitus Experimental/terapia , Humanos , Insulina/uso terapéutico , Macaca , Porcinos , Trasplante Heterólogo
3.
Xenotransplantation ; 27(4): e12577, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31903659

RESUMEN

BACKGROUND: Our goal was to identify clinically relevant immunotherapies that synergize with microencapsulation to protect adult porcine islet (API) xenografts in diabetic NOD mice. We have shown previously that dual costimulatory blockade (CTLA4-Ig plus anti-CD154 mAb) combined with encapsulation protects APIs long-term in NOD mice. Since no anti-CD154 mAbs currently are approved for use in humans, we tested the efficacy of other targeted immunosuppression regimens that might be used for diabetic patients receiving encapsulated islets. METHODS: Microencapsulated APIs were transplanted i.p. in diabetic NOD mice given either no immunosuppression or combinations immunosuppressive reagents. Graft function was monitored by blood glucose levels, i.p. glucose tolerance tests, and histology. Mechanisms of rejection were investigated by phenotyping host peritoneal cells and measuring graft site cytokine and chemokine levels. RESULTS: New immunosuppressive therapies were compared to CTLA4-Ig plus anti-CD154 mAb, used here as a control. The most effective was triple treatment with CTLA4-Ig, anti-CD154 mAb, and intracapsular CXCL12, and the next most effective was a non-depleting anti-CD4 mAb (YTS177.9) plus intracapsular CXCL12. Three additional regimens (CTLA4-Ig plus YTS177.9, YTS177.9 alone, and anti-OX40-Ligand mAb alone) significantly prolonged encapsulated API function. Dual treatment with CTLA4-Ig plus anti-CD40 mAb was as effective as CTLA4-Ig plus anti-CD154 mAb. Five other monotherapies and three combination therapies did not augment encapsulated API survival. Most peritoneal cytokines and chemokines were either absent or minimal. At necropsy, the capsules were intact, not fibrosed, and clean when function was maintained, but were coated with host cells if rejection had occurred. CONCLUSIONS: Multiple different immunotherapies which specifically inhibit CD4+ T cells, modulate T-cell trafficking, or interfere with antigen presentation can substitute for anti-CD154 mAb to prolong encapsulated islet xenograft function in diabetic NOD mice.


Asunto(s)
Diabetes Mellitus Experimental , Terapia de Inmunosupresión/métodos , Trasplante de Islotes Pancreáticos , Trasplante Heterólogo , Animales , Ligando de CD40 , Diabetes Mellitus Experimental/cirugía , Rechazo de Injerto , Supervivencia de Injerto , Xenoinjertos , Ratones , Ratones Endogámicos NOD , Porcinos
4.
Xenotransplantation ; 25(6): e12443, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30054944

RESUMEN

BACKGROUND: Allogeneic islet transplantation for the treatment of type 1 diabetes often requires multiple implant procedures, from as many as several human pancreas donors, to achieve lasting clinical benefit. Given the limited availability of human pancreases for islet isolation, porcine islets have long been considered a potential option for clinical use. Agarose-encapsulated porcine islets (macrobeads) permit long-term culture and thus a thorough evaluation of microbiological safety and daily insulin secretory capacity, prior to implantation. The goal of this study was the development of a method for determining an effective dose of encapsulated islets based on their measured in vitro insulin secretion in a preclinical model of type 1 diabetes. METHODS: Spontaneously diabetic BioBreeding diabetes-prone rats were implanted with osmotic insulin pumps in combination with continuous glucose monitoring to establish the daily insulin dose required to achieve continuous euglycaemia in individual animals. Rats were then implanted with a 1×, 2× or 3× dose (defined as the ratio of macrobead in vitro insulin secretion per 24 hours to the recipient animal's total daily insulin requirement) of porcine islet macrobeads, in the absence of immunosuppression. In vivo macrobead function was assessed by recipient non-fasted morning blood glucose values, continuous glucose monitoring and the presence of peritoneal porcine C-peptide. At the end of the study, the implanted macrobeads were removed and returned to in vitro culture for the evaluation of insulin secretion. RESULTS: Diabetic rats receiving a 2× macrobead implant exhibited significantly improved blood glucose regulation compared to that of rats receiving a 1× dose during a 30-day pilot study. In a 3-month follow-up study, 2× and 3× macrobead doses initially controlled blood glucose levels equally well, although several animals receiving a 3× dose maintained euglycaemia throughout the study, compared to none of the 2× animals. The presence of porcine C-peptide in rat peritoneal fluid 3 months post-implant and the recurrence of hyperglycaemia following macrobead removal, along with the finding of persistent in vitro insulin secretion from retrieved macrobeads, confirmed long-term graft function. CONCLUSIONS: Increasing dosages of islet macrobeads transplanted into diabetic rats, based on multiples of in vitro insulin secretion matched to the recipient's exogenous insulin requirements, correlated with improved blood glucose regulation and increased duration of graft function. These results demonstrate the usefulness of a standardized model for the evaluation of the functional effectiveness of islets intended for transplantation, in this case using intraperitoneally implanted agarose macrobeads, in diabetic rats. The results suggest that some features of this islet-dosing methodology may be applicable, and indeed necessary, to clinical allogeneic and xenogeneic islet transplantation.


Asunto(s)
Secreción de Insulina/fisiología , Insulina/biosíntesis , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/metabolismo , Animales , Automonitorización de la Glucosa Sanguínea/métodos , Diabetes Mellitus Experimental/sangre , Trasplante de Islotes Pancreáticos/métodos , Proyectos Piloto , Trasplante Heterólogo/métodos
5.
Transplant Direct ; 2(7): e86, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27830180

RESUMEN

BACKGROUND: Human allogeneic islet transplantation for treatment of type 1 diabetes provides numerous clinical benefits, such as fewer episodes of hypoglycemic unawareness and tighter control of blood glucose levels. Availability of human pancreas for clinical and research use, however, is severely limited. Porcine pancreas offers an abundant source of tissue for optimization of islet isolation methodology and future clinical transplantation, thereby increasing patient access to this potentially lifesaving procedure. METHODS: Porcine islet isolations were performed using varying amounts of collagenase (7.5, 3.75, or 2.5 Wunsch units per gram tissue) and neutral protease activity (12 000, 6000, or 4000 neutral protease units per gram tissue) and perfusion volumes (1.7 or 0.85 mL/g tissue) to assess their effects on isolation outcomes. Retention of dissociative enzymes within the pancreas during perfusion and digestion was evaluated, along with distribution of the perfusion solution within the tissue. RESULTS: Reducing enzyme usage by as much as 67% and perfusion volume by 50% led to equally successful islet isolation outcomes when compared with the control group (48 ± 7% of tissue digested and 1088 ± 299 islet equivalents per gram of pancreas vs 47 ± 11% and 1080 ± 512, respectively). Using margin-marking dye in the perfusion solution to visualize enzyme distribution demonstrated that increasing perfusion volume did not improve tissue infiltration. CONCLUSIONS: Current protocols for porcine islet isolation consume excessive amounts of dissociative enzymes, elevating cost and limiting research and development. These data demonstrate that islet isolation protocols can be optimized to significantly reduce enzyme usage while maintaining yield and function and thus accelerating progress toward clinical application.

6.
Xenotransplantation ; 23(6): 444-463, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27862363

RESUMEN

BACKGROUND: The use of porcine islets to replace insulin-producing islet ß-cells, destroyed during the diabetogenic disease process, presents distinct challenges if this option is to become a therapeutic reality for the treatment of type 1 diabetes. These challenges include a thorough evaluation of the microbiological safety of the islets. In this study, we describe a robust porcine islet-screening program that provides a high level of confidence in the microbiological safety of porcine islets suitable for clinical trials. METHODS: A four-checkpoint program systematically screens the donor herd (Large White - Yorkshire × Landrace F1 hybrid animals), individual sentinel and pancreas donor animals and, critically, the islet macrobeads themselves. Molecular assays screen for more than 30 known viruses, while electron microscopy and in vitro studies are employed to screen for potential new or divergent (emergent) viruses. RESULTS: Of 1207 monthly samples taken from random animals over a 2-year period, only a single positive result for Transmissible gastroenteritis virus was observed, demonstrating the high level of biosecurity maintained in the source herd. Given the lack of clinical signs, positive antibody titers for Porcine reproductive and respiratory syndrome virus, Porcine parvovirus, and Influenza A confirm the efficacy of the herd vaccination program. Porcine respiratory coronavirus was found to be present in the herd, as expected for domestic swine. Tissue homogenate samples from six sentinel and 11 donor animals, over the same 2-year period, were negative for the presence of viruses when co-cultured with six different cell lines from four species. The absence of adventitious viruses in separate islet macrobead preparations produced from 12 individual pancreas donor animals was confirmed using validated molecular (n = 32 viruses), in vitro culture (cells from four species), and transmission electron microscopy assays (200 cell profiles per donor animal) over the same 2-year period. There has been no evidence of viral transmission following the implantation of these same encapsulated and functional porcine islets into non-immunosuppressed diabetic cynomolgus macaques for up to 4 years. Isolated peripheral blood mononuclear cells from all time points were negative for PCV (Type 2), PLHV, PRRSV, PCMV, and PERV-A, PERV-B, and PERV-C by PCR analysis in all six recipient animals. CONCLUSION: The four-checkpoint program is a robust and reliable method for characterization of the microbiological safety of encapsulated porcine islets intended for clinical trials.


Asunto(s)
Leucocitos Mononucleares/citología , Páncreas/microbiología , Trasplante Heterólogo , Animales , Línea Celular , Diabetes Mellitus Tipo 1/terapia , Insulina/metabolismo , Secreción de Insulina , Páncreas/metabolismo , Trasplante de Páncreas , Sefarosa/farmacología , Porcinos , Trasplante Heterólogo/métodos
7.
Biochem Biophys Res Commun ; 476(4): 580-585, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27261433

RESUMEN

Agarose encapsulation of porcine islets allows extended in vitro culture, providing ample time to determine the functional capacity of the islets and conduct comprehensive microbiological safety testing prior to implantation as a treatment for type 1 diabetes mellitus. However, the effect that agarose encapsulation and long-term culture may have on porcine islet gene expression is unknown. The aim of the present study was to compare the transcriptome of encapsulated porcine islets following long-term in vitro culture against free islets cultured overnight. Global gene expression analysis revealed no significant change in the expression of 98.47% of genes. This indicates that the gene expression profile of free islets is highly conserved following encapsulation and long-term culture. Importantly, the expression levels of genes that code for critical hormones secreted by islets (insulin, glucagon, and somatostatin) as well as transcripts encoding proteins involved in their packaging and secretion are unchanged. While a small number of genes known to play roles in the insulin secretion and insulin signaling pathways are differentially expressed, our results show that overall gene expression is retained following islet isolation, agarose encapsulation, and long-term culture.


Asunto(s)
Islotes Pancreáticos/metabolismo , Animales , Femenino , Expresión Génica , Ontología de Genes , Glucagón/metabolismo , Técnicas In Vitro , Insulina/metabolismo , Secreción de Insulina , Sefarosa , Transducción de Señal/genética , Somatostatina/metabolismo , Sus scrofa , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Transcriptoma
8.
Cell Transplant ; 23(8): 929-44, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23635430

RESUMEN

The transplantation of porcine islets of Langerhans to treat type 1 diabetes may provide a solution to the demand for insulin-producing cells. Porcine islets encapsulated in agarose-agarose macrobeads have been shown to function in nonimmunosuppressed xenogeneic models of both streptozotocin-induced and autoimmune type 1 diabetes. One advantage of agarose encapsulation is the ability to culture macrobeads for extended periods, permitting microbiological and functional assessment. Herein we describe optimization of the agarose matrix that results in improved islet function. Porcine islets (500 IEQs) from retired breeding sows were encapsulated in 1.5% SeaKem Gold (SG), 0.8% SG, or 0.8% Litex (Li) agarose, followed by an outer capsule of 5% SG agarose. Insulin production by the encapsulated islets exhibited an agarose-specific effect with 20% (0.8% SG) to 50% (0.8% Li) higher initial insulin production relative to 1.5% SG macrobeads. Insulin production was further increased by 40-50% from week 2 to week 12 in both agarose types at the 0.8% concentration, whereas islets encapsulated in 1.5% SG agarose increased insulin production by approximately 20%. Correspondingly, fewer macrobeads were required to restore normoglycemia in streptozotocin-induced diabetic female CD(SD) rats that received 0.8% Li (15 macrobeads) or 0.8% SG (17 macrobeads) as compared to 1.5% SG (19 macrobeads). Islet cell proliferation was also observed during the first 2 months postencapsulation, peaking at 4 weeks, where approximately 50% of islets contained proliferative cells, including ß-cells, regardless of agarose type. These results illustrate the importance of optimizing the microenvironment of encapsulated islets to improve islet performance and advance the potential of islet xenotransplantation for the treatment of type 1 diabetes.


Asunto(s)
Diabetes Mellitus Experimental/terapia , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/citología , Páncreas/citología , Sefarosa , Trasplante Heterólogo/métodos , Animales , Proliferación Celular/fisiología , Diabetes Mellitus Tipo 1/terapia , Femenino , Masculino , Ratas , Ratas Sprague-Dawley , Porcinos
9.
Tissue Eng ; 13(6): 1219-26, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17518715

RESUMEN

Our group has shown that mechanical stimulation increases the stiffness of stem cell-collagen sponge constructs at 14 days in culture and subsequent rabbit patellar tendon repairs at 12 weeks postsurgery. What remains unclear is which genes might be responsible for this increase in stiffness. Therefore, the objective of this study was to determine how a tensile stimulus affects the gene expression of stem cell-collagen sponge constructs used to repair rabbit central patellar tendon defects. Tissue-engineered constructs were created by seeding mesenchymal stem cells (MSCs) from 10 adult rabbits at 0.14 x 10(6) cells/construct in type I collagen sponges. Half of the constructs were mechanically stimulated once every 5 min for 8 h/d to a peak strain of 2.4% for 2 weeks. The other half remained in an incubator without mechanical stimulation for 2 weeks. After 14 days in culture, half of the stimulated and nonstimulated constructs were prepared to determine the expression of collagen type I, collagen type III, decorin, fibronectin, and glyceraldehyde-3-phosphate dehydrogenase genes using real-time quantitative reverse transcriptase polymerase chain reaction. The remaining constructs were mechanically tested to determine their mechanical properties. Two weeks of in vitro mechanical stimulation significantly increased collagen type I and collagen type III gene expression of the stem cell-collagen sponge constructs. Stimulated constructs showed 3 and 4 times greater collagen type I (p = 0.0001) and collagen type III gene expression (p = 0.001) than nonstimulated controls. Stimulated constructs also had 2.5 times the linear stiffness and 4 times the linear modulus of nonstimulated constructs. However, mechanical stimulation did not significantly increase decorin or fibronectin gene expression (p = 0.2) after 14 days in culture. This study shows that mechanical stimulation of cell-sponge constructs produces similar increases in the expression of 2 structural genes, as well as linear stiffness and linear modulus.


Asunto(s)
Colágeno Tipo II/metabolismo , Colágeno Tipo I/metabolismo , Expresión Génica , Mecanotransducción Celular/fisiología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Animales , Células Cultivadas , Colágeno Tipo I/química , Elasticidad , Femenino , Expresión Génica/fisiología , Técnicas In Vitro , Ligamento Rotuliano/lesiones , Ligamento Rotuliano/patología , Ligamento Rotuliano/cirugía , Estimulación Física , Conejos , Estrés Mecánico , Resistencia a la Tracción
10.
Mol Endocrinol ; 21(4): 895-907, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17244764

RESUMEN

The androgen receptor (AR) is a transcription factor that plays a critical role in male sexual development, spermatogenesis, and maintenance of hormonal homeostasis. Despite the extensive knowledge of the phenotypic consequences of mutations in Ar, very little is known about the transcriptional targets of AR within the testis. To identify potential targets of androgen signaling in the testis, we have analyzed the transcriptional profile of adult testes from Ar hypomorphs alone or in combination with Sertoli cell-specific Ar ablation. Using Affymetrix MOE430A mouse genome arrays we interrogated more than 22,000 transcripts. We found the expression level of 62 transcripts in the Ar mutants differed by greater than 2-fold compared with wild type. We also found that more transcripts were up-regulated than down-regulated, highlighting AR's role as a transcriptional repressor in the testis. Twelve transcripts were uniquely affected, and 16 transcripts were more severely affected in Sertoli cell-specific Ar ablation compared with hypomorphic Ar mutants. Using a comparative genomic approach, we analyzed the 6 kb around the transcriptional start sites of affected transcripts for conserved AREs (androgen response elements). We identified at least one conserved ARE in 65% of the genes misregulated in our microarray analysis where clear mouse-human orthologs were available. We used a reporter assay in cell culture to functionally verify the AREs for the kallikrein 27 gene. This suggests that the majority of the misregulated transcripts have a high probability of being direct AR targets. The transcripts affected by these Ar mutations encode a diverse array of proteins whose molecular functions support the contention that AR supports spermatogenesis in both a permissive and instructive fashion.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Receptores Androgénicos/fisiología , Proteínas Represoras/fisiología , Espermatogénesis/genética , Testículo/metabolismo , Andrógenos/metabolismo , Animales , Perfilación de la Expresión Génica , Calicreínas/genética , Masculino , Ratones , Ratones Mutantes , Mutación , Péptido Hidrolasas/genética , Receptores Androgénicos/genética , Proteínas Represoras/genética , Elementos de Respuesta/genética , Transducción de Señal/genética , Espermatozoides/metabolismo , Transcripción Genética
11.
Proc Natl Acad Sci U S A ; 102(46): 16696-700, 2005 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16275920

RESUMEN

Within the mammalian testis, specialized tight junctions between somatic Sertoli cells create basal and apical polarity within the cells, restrict movement of molecules between cells, and separate the seminiferous epithelium into basal and adluminal compartments. These tight junctions form the basis of the blood-testis barrier, a structure whose function and dynamic regulation is poorly understood. In this study, we used microarray gene expression profiling to identify genes with altered transcript levels in a mouse model for conditional androgen insensitivity. We show that testosterone, acting through its receptor expressed in Sertoli cells, regulates the expression of claudin 3, which encodes a transient component of newly formed tight junctions. Sertoli cell-specific ablation of androgen receptor results in increased permeability of the blood-testis barrier to biotin, suggesting claudin 3 regulates the movement of small molecules across the Sertoli cell tight junctions. These results suggest that androgen action in Sertoli cells regulates germ cell differentiation, in part by controlling the microenvironment of the seminiferous epithelium. Our studies also indicate that hormonal strategies for male contraception may interfere with the blood-testis barrier.


Asunto(s)
Andrógenos/fisiología , Barrera Hematotesticular , Testículo/metabolismo , Animales , Secuencia de Bases , Línea Celular , Claudina-3 , Cartilla de ADN , Perfilación de la Expresión Génica , Masculino , Proteínas de la Membrana/genética , Ratones , Microscopía Fluorescente , Análisis de Secuencia por Matrices de Oligonucleótidos , Permeabilidad , Testículo/citología
12.
Cancer Res ; 65(1): 166-76, 2005 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15665292

RESUMEN

The adenomatous polyposis coli (APC) tumor suppressor is a major regulator of the Wnt signaling pathway in normal intestinal epithelium. APC, in conjunction with AXIN and GSK-3beta, forms a complex necessary for the degradation of beta-catenin, thereby preventing beta-catenin/T-cell factor interaction and alteration of growth-controlling genes such as c-MYC and cyclin D1. Inappropriate activation of the Wnt pathway, via Apc/APC mutation, leads to gastrointestinal tumor formation in both the mouse and human. In order to discover novel genes that may contribute to tumor progression in the gastrointestinal tract, we used cDNA microarrays to identify 114 genes with altered levels of expression in Apc(Min) mouse adenomas from the duodenum, jejunum, and colon. Changes in the expression of 24 of these 114 genes were not observed during mouse development at embryonic day 16.5, postnatal day 1, or postnatal day 14 (relative to normal adult intestine). These 24 genes are not previously known Wnt targets. Seven genes were validated by real-time reverse transcription-PCR analysis, whereas four genes were validated by in situ hybridization to mouse adenomas. Real-time reverse transcription-PCR analysis of human colorectal cancer cell lines and adenocarcinomas revealed that altered expression levels were also observed for six of the genes Igfbp5, Lcn2, Ly6d, N4wbp4 (PMEPA1), S100c, and Sox4.


Asunto(s)
Neoplasias Colorrectales/genética , Eliminación de Gen , Genes APC , Intestinos/embriología , Transcripción Genética , Adenoma/genética , Animales , Neoplasias del Colon/genética , ADN Complementario/genética , Neoplasias Duodenales/genética , Neoplasias Gastrointestinales/genética , Marcadores Genéticos , Humanos , Neoplasias del Yeyuno/genética , Ratones , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Int J Androl ; 27(6): 335-42, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15595952

RESUMEN

Proper functioning of the mammalian testis is dependent upon an array of hormonal messengers acting through endocrine, paracrine, and autocrine pathways. Within the testis, the primary messengers are the gonadotrophins, follicle stimulating hormone and luteinizing hormone, and the androgens. Abundant evidence indicates that the role of the gonadotrophins is to maintain proper functioning of testicular somatic cells. It is the androgens, primarily testosterone, which act through the somatic cells to regulate germ cell differentiation. Despite extensive research in this area, little is known about the cell-specific requirements for androgens and even less is understood about the downstream effectors of androgen signalling. However, recent work using cell-specific ablation of androgen receptor function has demonstrated a clear requirement for androgen signalling at multiple, discrete time points during spermatogenesis. These models also provide useful tools for identifying the targets of androgen receptor activity. The purpose of this review is to provide a brief overview of recent advances in our understanding of hormonal regulation of spermatogenesis, with an emphasis on the role of testosterone within the testis, and to pose important questions for future research in this field.


Asunto(s)
Andrógenos/fisiología , Gonadotropinas/fisiología , Espermatogénesis/fisiología , Animales , Femenino , Masculino , Ratones , Ratas
14.
Development ; 131(2): 459-67, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14701682

RESUMEN

Androgen receptor function is required for male embryonic sexual differentiation, pubertal development and the regulation of spermatogenesis in mammals. During spermatogenesis, this requirement is thought to be mediated by Sertoli cells and its genetic and pharmacological disruption is manifested in spermatocytes as meiotic arrest. Through studies of a hypomorphic and conditional allele of the androgen receptor (Ar) gene, we have uncovered a dual post-meiotic requirement for androgen receptor activity during male germ cell differentiation. Observations in Ar hypomorphic animals demonstrate that terminal differentiation of spermatids and their release from the seminiferous epithelium is AR dependent and maximally sensitive to AR depletion within the testis. Cell-specific disruption of Ar in Sertoli cells of hypomorphic animals further shows that progression of late-round spermatids to elongating steps is sensitive to loss of Sertoli cell AR function, but that progression through meiosis and early-round spermatid differentiation are surprisingly unaffected.


Asunto(s)
Receptores Androgénicos/fisiología , Células de Sertoli/metabolismo , Espermátides/citología , Espermátides/metabolismo , Alelos , Animales , Diferenciación Celular , Epidídimo/anomalías , Haploidia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Mutación , Fenotipo , Receptores Androgénicos/deficiencia , Receptores Androgénicos/genética , Espermatogénesis/genética , Espermatogénesis/fisiología , Testículo/anomalías
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...