Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961174

RESUMEN

The incorporation of histone variants, distinct paralogs of core histones, into chromatin affects all DNA-templated processes in the cell, including the regulation of transcription. In recent years, much research has been focused on H2A.Z, an evolutionarily conserved H2A variant found in all eukaryotes. In order to investigate the functional conservation of H2A.Z histones during eukaryotic evolution we transformed h2a.z deficient plants with three human H2A.Z proteins to assess their ability to rescue the mutant defects. We discovered that human H2A.Z.1 and H2A.Z.2.1 fully complement the phenotypic abnormalities of h2a.z plants despite the fact that Arabidopsis and human H2A.Z N-terminal tail sequences are quite divergent. In contrast, the brain-specific splice variant H2A.Z.2.2 has a dominant-negative effect in wild-type plants. Furthermore, H2A.Z.1 almost completely re-establishes normal H2A.Z chromatin occupancy in h2a.z plants and restores the transcript levels of more than 84 % of misexpressed genes. Finally, our hypothesis that the N-terminal tail of Arabidopsis H2A.Z is not crucial for its developmental functions was supported by the ability of N-terminal end truncations of Arabidopsis HTA11 to largely rescue the defects of h2a.z mutants.

2.
Annu Rev Plant Biol ; 73: 149-172, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35167758

RESUMEN

The basic unit of chromatin, the nucleosome, is an octamer of four core histone proteins (H2A, H2B, H3, and H4) and serves as a fundamental regulatory unit in all DNA-templated processes. The majority of nucleosome assembly occurs during DNA replication when these core histones are produced en masse to accommodate the nascent genome. In addition, there are a number of nonallelic sequence variants of H2A and H3 in particular, known as histone variants, that can be incorporated into nucleosomes in a targeted and replication-independent manner. By virtue of their sequence divergence from the replication-coupled histones, these histone variants can impart unique properties onto the nucleosomes they occupy and thereby influence transcription and epigenetic states, DNA repair, chromosome segregation, and other nuclear processes in ways that profoundly affect plant biology. In this review, we discuss the evolutionary origins of these variants in plants, their known roles in chromatin, and their impacts on plant development and stress responses. We focus on the individual and combined roles of histone variants in transcriptional regulation within euchromatic and heterochromatic genome regions. Finally, we highlight gaps in our understanding of plant variants at the molecular, cellular, and organismal levels, and we propose new directions for study in the field of plant histone variants.


Asunto(s)
Cromatina , Nucleosomas , Cromatina/genética , Reparación del ADN , Replicación del ADN , Histonas/genética , Nucleosomas/genética
3.
PLoS Genet ; 15(8): e1008326, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31381567

RESUMEN

The SWR1 chromatin remodeling complex, which deposits the histone variant H2A.Z into nucleosomes, has been well characterized in yeast and animals, but its composition in plants has remained uncertain. We used the conserved SWR1 subunit ACTIN RELATED PROTEIN 6 (ARP6) as bait in tandem affinity purification experiments to isolate associated proteins from Arabidopsis thaliana. We identified all 11 subunits found in yeast SWR1 and the homologous mammalian SRCAP complexes, demonstrating that this complex is conserved in plants. We also identified several additional proteins not previously associated with SWR1, including Methyl-CpG-BINDING DOMAIN 9 (MBD9) and three members of the Alfin1-like protein family, all of which have been shown to bind modified histone tails. Since mbd9 mutant plants were phenotypically similar to arp6 mutants, we explored a potential role for MBD9 in H2A.Z deposition. We found that MBD9 is required for proper H2A.Z incorporation at thousands of discrete sites, which represent a subset of the genomic regions normally enriched with H2A.Z. We also discovered that MBD9 preferentially interacts with acetylated histone H4 peptides, as well as those carrying mono- or dimethylated H3 lysine 4, or dimethylated H3 arginine 2 or 8. Considering that MBD9-dependent H2A.Z sites show a distinct histone modification profile, we propose that MBD9 recognizes particular nucleosome modifications via its PHD- and Bromo-domains and thereby guides SWR1 to these sites for H2A.Z deposition. Our data establish the SWR1 complex as being conserved across eukaryotes and suggest that MBD9 may be involved in targeting the complex to specific genomic sites through nucleosomal interactions. The finding that MBD9 does not appear to be a core subunit of the Arabidopsis SWR1 complex, along with the synergistic phenotype of arp6;mbd9 double mutants, suggests that MBD9 also has important roles beyond H2A.Z deposition.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ensamble y Desensamble de Cromatina , Genoma de Planta/genética , Histonas/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/genética , Cromatina/metabolismo , Mutación , Nucleosomas/genética , Nucleosomas/metabolismo , Plantas Modificadas Genéticamente
4.
Am J Hum Genet ; 103(6): 1022-1029, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30526861

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are a group of severe epilepsies characterized by refractory seizures and developmental impairment. Sequencing approaches have identified causal genetic variants in only about 50% of individuals with DEEs.1-3 This suggests that unknown genetic etiologies exist, potentially in the ∼98% of human genomes not covered by exome sequencing (ES). Here we describe seven likely pathogenic variants in regions outside of the annotated coding exons of the most frequently implicated epilepsy gene, SCN1A, encoding the alpha-1 sodium channel subunit. We provide evidence that five of these variants promote inclusion of a "poison" exon that leads to reduced amounts of full-length SCN1A protein. This mechanism is likely to be broadly relevant to human disease; transcriptome studies have revealed hundreds of poison exons,4,5 including some present within genes encoding other sodium channels and in genes involved in neurodevelopment more broadly.6 Future research on the mechanisms that govern neuronal-specific splicing behavior might allow researchers to co-opt this system for RNA therapeutics.


Asunto(s)
Epilepsias Mioclónicas/genética , Epilepsia/genética , Exones/genética , Variación Genética/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/genética , Canales de Sodio/genética , Transcriptoma/genética
5.
Analyst ; 141(20): 5714-5721, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27486597

RESUMEN

Employing 3D-printed templates for macro-to-micro interfacing, a passively operated polydimethysiloxane (PDMS) microfluidic device was designed for time-resolved secretion sampling from primary murine islets and epidiymal white adipose tissue explants. Interfacing in similar devices is typically accomplished through manually punched or drilled fluidic reservoirs. We previously introduced the concept of using hand fabricated polymer inserts to template cell culture and sampling reservoirs into PDMS devices, allowing rapid stimulation and sampling of endocrine tissue. However, fabrication of the fluidic reservoirs was time consuming, tedious, and was prone to errors during device curing. Here, we have implemented computer-aided design and 3D printing to circumvent these fabrication obstacles. In addition to rapid prototyping and design iteration advantages, the ability to match these 3D-printed interface templates with channel patterns is highly beneficial. By digitizing the template fabrication process, more robust components can be produced with reduced fabrication variability. Herein, 3D-printed templates were used for sculpting millimetre-scale reservoirs into the above-channel, bulk PDMS in passively-operated, eight-channel devices designed for time-resolved secretion sampling of murine tissue. Devices were proven functional by temporally assaying glucose-stimulated insulin secretion from <10 pancreatic islets and glycerol secretion from 2 mm adipose tissue explants, suggesting that 3D-printed interface templates could be applicable to a variety of cells and tissue types. More generally, this work validates desktop 3D printers as versatile interfacing tools in microfluidic laboratories.


Asunto(s)
Técnicas de Cultivo de Célula , Glucosa/análisis , Glicerol/análisis , Dispositivos Laboratorio en un Chip , Impresión Tridimensional , Tejido Adiposo/citología , Animales , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA