Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 110(33): 13416-21, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23901114

RESUMEN

Certain lower vertebrates like zebrafish activate proliferation of spared cardiomyocytes after cardiac injury to regenerate lost heart muscle. Here, we used translating ribosome affinity purification to profile translating RNAs in zebrafish cardiomyocytes during heart regeneration. We identified dynamic induction of several Jak1/Stat3 pathway members following trauma, events accompanied by cytokine production. Transgenic Stat3 inhibition in cardiomyocytes restricted injury-induced proliferation and regeneration, but did not reduce cardiogenesis during animal growth. The secreted protein Rln3a was induced in a Stat3-dependent manner by injury, and exogenous Rln3 delivery during Stat3 inhibition stimulated cardiomyocyte proliferation. Our results identify an injury-specific cardiomyocyte program essential for heart regeneration.


Asunto(s)
Corazón/fisiología , Janus Quinasa 1/metabolismo , Miocitos Cardíacos/metabolismo , Regeneración/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Proliferación Celular , Cartilla de ADN/genética , Perfilación de la Expresión Génica , Técnicas Histológicas , Inmunoprecipitación , Análisis por Micromatrices , ARN/aislamiento & purificación , Relaxina/metabolismo
2.
Development ; 140(3): 660-6, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23293297

RESUMEN

Adult mammalian cardiomyocytes have little capacity to proliferate in response to injury, a deficiency that underlies the poor regenerative ability of human hearts after myocardial infarction. By contrast, zebrafish regenerate heart muscle after trauma by inducing proliferation of spared cardiomyocytes, providing a model for identifying manipulations that block or enhance these events. Although direct genetic or chemical screens of heart regeneration in adult zebrafish present several challenges, zebrafish embryos are ideal for high-throughput screening. Here, to visualize cardiomyocyte proliferation events in live zebrafish embryos, we generated transgenic zebrafish lines that employ fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. We then performed a chemical screen and identified several small molecules that increase or reduce cardiomyocyte proliferation during heart development. These compounds act via Hedgehog, Insulin-like growth factor or Transforming growth factor ß signaling pathways. Direct examination of heart regeneration after mechanical or genetic ablation injuries indicated that these pathways are activated in regenerating cardiomyocytes and that they can be pharmacologically manipulated to inhibit or enhance cardiomyocyte proliferation during adult heart regeneration. Our findings describe a new screening system that identifies molecules and pathways with the potential to modify heart regeneration.


Asunto(s)
Proliferación Celular , Corazón/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Miocitos Cardíacos/citología , Regeneración , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/metabolismo , Animales Modificados Genéticamente/fisiología , Biomarcadores/metabolismo , Catecoles/farmacología , Recuento de Células , Ciclohexilaminas/farmacología , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/fisiología , Femenino , Corazón/embriología , Proteínas Hedgehog/agonistas , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Isoquinolinas/farmacología , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Tiofenos/farmacología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Transgenes , Ubiquitinación , Pez Cebra/genética , Pez Cebra/lesiones , Pez Cebra/fisiología
3.
Dev Cell ; 22(4): 879-86, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22516203

RESUMEN

Determining the cellular source of new skeletal elements is critical for understanding appendage regeneration in amphibians and fish. Recent lineage-tracing studies indicated that zebrafish fin ray bone regenerates through the dedifferentiation and proliferation of spared osteoblasts, with limited if any contribution from other cell types. Here, we examined the requirement for this mechanism by using genetic ablation techniques to destroy virtually all skeletal osteoblasts in adult zebrafish fins. Animals survived this injury and restored the osteoblast population within 2 weeks. Moreover, amputated fins depleted of osteoblasts regenerated new fin ray structures at rates indistinguishable from fins possessing a resident osteoblast population. Inducible genetic fate mapping confirmed that new bone cells do not arise from dedifferentiated osteoblasts under these conditions. Our findings demonstrate diversity in the cellular origins of appendage bone and reveal that de novo osteoblasts can fully support the regeneration of amputated zebrafish fins.


Asunto(s)
Aletas de Animales/citología , Huesos/citología , Diferenciación Celular , Extremidades/crecimiento & desarrollo , Proteínas Fluorescentes Verdes/genética , Osteoblastos/citología , Regeneración/fisiología , Amputación Quirúrgica , Aletas de Animales/metabolismo , Animales , Animales Modificados Genéticamente , Huesos/metabolismo , Linaje de la Célula , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Osteoblastos/metabolismo , Pez Cebra
4.
Development ; 138(16): 3421-30, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21752928

RESUMEN

Natural models of heart regeneration in lower vertebrates such as zebrafish are based on invasive surgeries causing mechanical injuries that are limited in size. Here, we created a genetic cell ablation model in zebrafish that facilitates inducible destruction of a high percentage of cardiomyocytes. Cell-specific depletion of over 60% of the ventricular myocardium triggered signs of cardiac failure that were not observed after partial ventricular resection, including reduced animal exercise tolerance and sudden death in the setting of stressors. Massive myocardial loss activated robust cellular and molecular responses by endocardial, immune, epicardial and vascular cells. Destroyed cardiomyocytes fully regenerated within several days, restoring cardiac anatomy, physiology and performance. Regenerated muscle originated from spared cardiomyocytes that acquired ultrastructural and electrophysiological characteristics of de-differentiation and underwent vigorous proliferation. Our study indicates that genetic depletion of cardiomyocytes, even at levels so extreme as to elicit signs of cardiac failure, can be reversed by natural regenerative capacity in lower vertebrates such as zebrafish.


Asunto(s)
Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Corazón/fisiología , Miocitos Cardíacos/citología , Regeneración , Pez Cebra/genética , Pez Cebra/fisiología , Animales , Muerte Celular
5.
Development ; 138(14): 2895-902, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21653610

RESUMEN

Recent lineage-tracing studies have produced conflicting results about whether the epicardium is a source of cardiac muscle cells during heart development. Here, we examined the developmental potential of epicardial tissue in zebrafish during both embryonic development and injury-induced heart regeneration. We found that upstream sequences of the transcription factor gene tcf21 activated robust, epicardium-specific expression throughout development and regeneration. Cre recombinase-based, genetic fate-mapping of larval or adult tcf21(+) cells revealed contributions to perivascular cells, but not cardiomyocytes, during each form of cardiogenesis. Our findings indicate that natural epicardial fates are limited to non-myocardial cell types in zebrafish.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Corazón/embriología , Morfogénesis/fisiología , Pericardio/citología , Regeneración/fisiología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Técnica del Anticuerpo Fluorescente , Morfogénesis/genética , Pericardio/metabolismo , Regeneración/genética
6.
Dev Cell ; 20(3): 397-404, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21397850

RESUMEN

Zebrafish heart regeneration occurs through the activation of cardiomyocyte proliferation in areas of trauma. Here, we show that within 3 hr of ventricular injury, the entire endocardium undergoes morphological changes and induces expression of the retinoic acid (RA)-synthesizing enzyme raldh2. By one day posttrauma, raldh2 expression becomes localized to endocardial cells at the injury site, an area that is supplemented with raldh2-expressing epicardial cells as cardiogenesis begins. Induced transgenic inhibition of RA receptors or expression of an RA-degrading enzyme blocked regenerative cardiomyocyte proliferation. Injured hearts of the ancient fish Polypterus senegalus also induced and maintained robust endocardial and epicardial raldh2 expression coincident with cardiomyocyte proliferation, whereas poorly regenerative infarcted murine hearts did not. Our findings reveal that the endocardium is a dynamic, injury-responsive source of RA in zebrafish, and indicate key roles for endocardial and epicardial cells in targeting RA synthesis to damaged heart tissue and promoting cardiomyocyte proliferation.


Asunto(s)
Endocardio/metabolismo , Corazón/fisiología , Pericardio/metabolismo , Regeneración/fisiología , Tretinoina/metabolismo , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Evolución Biológica , Proliferación Celular , Endocardio/citología , Endocardio/lesiones , Corazón/anatomía & histología , Ratones , Datos de Secuencia Molecular , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Pericardio/citología , Pericardio/lesiones , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Transducción de Señal/fisiología , Pez Cebra/anatomía & histología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Nature ; 464(7288): 601-5, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20336144

RESUMEN

Recent studies indicate that mammals, including humans, maintain some capacity to renew cardiomyocytes throughout postnatal life. Yet, there is little or no significant cardiac muscle regeneration after an injury such as acute myocardial infarction. By contrast, zebrafish efficiently regenerate lost cardiac muscle, providing a model for understanding how natural heart regeneration may be blocked or enhanced. In the absence of lineage-tracing technology applicable to adult zebrafish, the cellular origins of newly regenerated cardiac muscle have remained unclear. Using new genetic fate-mapping approaches, here we identify a population of cardiomyocytes that become activated after resection of the ventricular apex and contribute prominently to cardiac muscle regeneration. Through the use of a transgenic reporter strain, we found that cardiomyocytes throughout the subepicardial ventricular layer trigger expression of the embryonic cardiogenesis gene gata4 within a week of trauma, before expression localizes to proliferating cardiomyocytes surrounding and within the injury site. Cre-recombinase-based lineage-tracing of cells expressing gata4 before evident regeneration, or of cells expressing the contractile gene cmlc2 before injury, each labelled most cardiac muscle in the ensuing regenerate. By optical voltage mapping of surface myocardium in whole ventricles, we found that electrical conduction is re-established between existing and regenerated cardiomyocytes between 2 and 4 weeks post-injury. After injury and prolonged fibroblast growth factor receptor inhibition to arrest cardiac regeneration and enable scar formation, experimental release of the signalling block led to gata4 expression and morphological improvement of the injured ventricular wall without loss of scar tissue. Our results indicate that electrically coupled cardiac muscle regenerates after resection injury, primarily through activation and expansion of cardiomyocyte populations. These findings have implications for promoting regeneration of the injured human heart.


Asunto(s)
Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Corazón/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Regeneración/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Proliferación Celular , Conductividad Eléctrica , Regulación de la Expresión Génica , Regeneración/genética , Pez Cebra/genética , Pez Cebra/metabolismo
8.
Development ; 135(1): 183-92, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18045840

RESUMEN

The heart maintains structural and functional integrity during years of continual contraction, but the extent to which new cell creation participates in cardiac homeostasis is unclear. Here, we assessed cellular and molecular mechanisms of cardiac homeostasis in zebrafish, which display indeterminate growth and possess an unusual capacity to regenerate after acute cardiac injury. Lowering fish density in the aquarium triggered rapid animal growth and robust cardiomyocyte proliferation throughout the adult ventricle, greater than that observed during slow animal growth or size maintenance. Rapid animal growth also induced strong expression of the embryonic epicardial markers raldh2 (aldh1a2) and tbx18 in adult epicardial tissue. Pulse-chase dye labeling experiments revealed that the epicardium recurrently contributes cells to the ventricular wall, indicating an active homeostatic process. Inhibition of signaling by Fibroblast growth factors (Fgfs) decreased this epicardial supplementation of the ventricular wall in growing zebrafish, and led to spontaneous ventricular scarring in animals maintaining cardiac size. Our results demonstrate that the adult zebrafish ventricle grows and is maintained by cardiomyocyte hyperplasia, and that epicardial cells are added to the ventricle in an Fgf-dependent fashion to support homeostasis.


Asunto(s)
Envejecimiento/fisiología , Células Epiteliales , Corazón/crecimiento & desarrollo , Homeostasis , Pez Cebra/crecimiento & desarrollo , Animales , Células Epiteliales/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hiperplasia/patología , Miocardio/metabolismo , Transducción de Señal , Células Madre , Pez Cebra/metabolismo
9.
Cell ; 127(3): 607-19, 2006 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-17081981

RESUMEN

Zebrafish possess a unique yet poorly understood capacity for cardiac regeneration. Here, we show that regeneration proceeds through two coordinated stages following resection of the ventricular apex. First a blastema is formed, comprised of progenitor cells that express precardiac markers, undergo differentiation, and proliferate. Second, epicardial tissue surrounding both cardiac chambers induces developmental markers and rapidly expands, creating a new epithelial cover for the exposed myocardium. A subpopulation of these epicardial cells undergoes epithelial-to-mesenchymal transition (EMT), invades the wound, and provides new vasculature to regenerating muscle. During regeneration, the ligand fgf17b is induced in myocardium, while receptors fgfr2 and fgfr4 are induced in adjacent epicardial-derived cells. When fibroblast growth factors (Fgf) signaling is experimentally blocked by expression of a dominant-negative Fgf receptor, epicardial EMT and coronary neovascularization fail, prematurely arresting regeneration. Our findings reveal injury responses by myocardial and epicardial tissues that collaborate in an Fgf-dependent manner to achieve cardiac regeneration.


Asunto(s)
Corazón/fisiología , Pericardio/lesiones , Regeneración/fisiología , Células Madre/fisiología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Animales no Consanguíneos , Diferenciación Celular , Lesiones Cardíacas/patología , Lesiones Cardíacas/fisiopatología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/cirugía , Masculino , Modelos Cardiovasculares , Miocardio/metabolismo , Miocardio/patología , Regeneración/genética , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA