Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Methods Mol Biol ; 2768: 29-50, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502386

RESUMEN

The analysis of antigen-specific T-cell responses has become routine in many laboratories. Functional T-cell assays like enzyme-linked-immuno-spot (ELISPOT), which depend on antigen-specific stimulation, increasingly use peptides to represent the antigen of interest. Besides single peptides, mixtures of peptides (peptide pools) are very frequently applied. Such peptide pools may, for example, represent entire proteins (with overlapping peptides covering a protein sequence) or include noncontiguous peptides such as a collection of T-cell-stimulating peptides. The optimum specification of single peptides or peptide pools for T-cell stimulation assays will depend on the purpose of the test, the target T-cell population, the availability of sample, requirements regarding reproducibility, and, last but not least, the available budget, to mention only the most important factors. Because of the way peptides are produced, they will always contain certain amounts of impurities such as peptides with deletions or truncated peptides, and there may be additional by-products of peptide synthesis. Optimized synthesis protocols as well as purification help reduce impurities that might otherwise cause false-positive assay results. However, specific requirements with respect to purity will vary depending on the purpose of an assay. Finally, storage conditions significantly affect the shelf life of peptides, which is relevant especially for longitudinal studies. The present book chapter addresses all of these aspects in detail. It should provide the researcher with all necessary background knowledge for making the right decisions when it comes to choosing, using, and storing peptides for ELISPOT and other T-cell stimulation assays.


Asunto(s)
Péptidos , Linfocitos T , Secuencia de Aminoácidos , Reproducibilidad de los Resultados
2.
Front Immunol ; 14: 1056525, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36798117

RESUMEN

Currently available COVID-19 vaccines include inactivated virus, live attenuated virus, mRNA-based, viral vectored and adjuvanted protein-subunit-based vaccines. All of them contain the spike glycoprotein as the main immunogen and result in reduced disease severity upon SARS-CoV-2 infection. While we and others have shown that mRNA-based vaccination reactivates pre-existing, cross-reactive immunity, the effect of vector vaccines in this regard is unknown. Here, we studied cellular and humoral responses in heterologous adenovirus-vector-based ChAdOx1 nCOV-19 (AZ; Vaxzeria, AstraZeneca) and mRNA-based BNT162b2 (BNT; Comirnaty, BioNTech/Pfizer) vaccination and compared it to a homologous BNT vaccination regimen. AZ primary vaccination did not lead to measurable reactivation of cross-reactive cellular and humoral immunity compared to BNT primary vaccination. Moreover, humoral immunity induced by primary vaccination with AZ displayed differences in linear spike peptide epitope coverage and a lack of anti-S2 IgG antibodies. Contrary to primary AZ vaccination, secondary vaccination with BNT reactivated pre-existing, cross-reactive immunity, comparable to homologous primary and secondary mRNA vaccination. While induced anti-S1 IgG antibody titers were higher after heterologous vaccination, induced CD4+ T cell responses were highest in homologous vaccinated. However, the overall TCR repertoire breadth was comparable between heterologous AZ-BNT-vaccinated and homologous BNT-BNT-vaccinated individuals, matching TCR repertoire breadths after SARS-CoV-2 infection, too. The reasons why AZ and BNT primary vaccination elicits different immune response patterns to essentially the same antigen, and the associated benefits and risks, need further investigation to inform vaccine and vaccination schedule development.


Asunto(s)
Vacuna BNT162 , COVID-19 , ChAdOx1 nCoV-19 , Reacciones Cruzadas , Humanos , Vacuna BNT162/inmunología , ChAdOx1 nCoV-19/inmunología , COVID-19/prevención & control , Receptores de Antígenos de Linfocitos T , SARS-CoV-2 , Vacunación
3.
J Transl Med ; 21(1): 123, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788606

RESUMEN

BACKGROUND: The infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has unpredictable manifestations of coronavirus disease (COVID-19) and variable clinical course with some patients being asymptomatic whereas others experiencing severe respiratory distress, or even death. We aimed to evaluate the immunoglobulin G (IgG) response towards linear peptides on a peptide array containing sequences from SARS-CoV-2, Middle East respiratory syndrome-related coronavirus (MERS) and common-cold coronaviruses 229E, OC43, NL63 and HKU1 antigens, in order to identify immunological indicators of disease outcome in SARS-CoV-2 infected patients. METHODS: We included in the study 79 subjects, comprising 19 pediatric and 30 adult SARS-CoV-2 infected patients with increasing disease severity, from mild to critical illness, and 30 uninfected subjects who were vaccinated with one dose of SARS-CoV-2 spike mRNA BNT162b2 vaccine. Serum samples were analyzed by a peptide microarray containing 5828 overlapping 15-mer synthetic peptides corresponding to the full SARS-CoV-2 proteome and selected linear epitopes of spike (S), envelope (E) and membrane (M) glycoproteins as well as nucleoprotein (N) of MERS, SARS and coronaviruses 229E, OC43, NL63 and HKU1 (isolates 1, 2 and 5). RESULTS: All patients exhibited high IgG reactivity against the central region and C-terminus peptides of both SARS-CoV-2 N and S proteins. Setting the threshold value for serum reactivity above 25,000 units, 100% and 81% of patients with severe disease, 36% and 29% of subjects with mild symptoms, and 8% and 17% of children younger than 8-years reacted against N and S proteins, respectively. Overall, the total number of peptides in the SARS-CoV-2 proteome targeted by serum samples was much higher in children compared to adults. Notably, we revealed a differential antibody response to SARS-CoV-2 peptides of M protein between adults, mainly reacting against the C-terminus epitopes, and children, who were highly responsive to the N-terminus of M protein. In addition, IgG signals against NS7B, NS8 and ORF10 peptides were found elevated mainly among adults with mild (63%) symptoms. Antibodies towards S and N proteins of other coronaviruses (MERS, 229E, OC43, NL63 and HKU1) were detected in all groups without a significant correlation with SARS-CoV-2 antibody levels. CONCLUSIONS: Overall, our results showed that antibodies elicited by specific linear epitopes of SARS-CoV-2 proteome are age dependent and related to COVID-19 clinical severity. Cross-reaction of antibodies to epitopes of other human coronaviruses was evident in all patients with distinct profiles between children and adult patients. Several SARS-CoV-2 peptides identified in this study are of particular interest for the development of vaccines and diagnostic tests to predict the clinical outcome of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Epítopos , Adulto , Niño , Humanos , Anticuerpos Antivirales , Vacuna BNT162 , Coronavirus Humano 229E , COVID-19/inmunología , Inmunoglobulina G , Coronavirus del Síndrome Respiratorio de Oriente Medio , Proteoma , SARS-CoV-2
4.
Sci Rep ; 13(1): 782, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36646780

RESUMEN

Profiling of the antibody responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) proteins in African populations is scarce. Here, we performed a detailed IgM and IgG epitope mapping study against 487 peptides covering SARS-CoV-2 wild-type structural proteins. A panel of 41 pre-pandemic and 82 COVID-19 RT-PCR confirmed sera from Madagascar and Senegal were used. We found that the main 36 immunodominant linear epitopes identified were (i) similar in both countries, (ii) distributed mainly in the Spike and the Nucleocapsid proteins, (iii) located outside the RBD and NTD regions where most of the reported SARS-CoV-2 variant mutations occur, and (iv) identical to those reported in European, North American, and Asian studies. Within the severe group, antibody levels were inversely correlated with the viral load. This first antibody epitope mapping study performed in patients from two African countries may be helpful to guide rational peptide-based diagnostic assays or vaccine development.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Mapeo Epitopo , Anticuerpos Antivirales , Epítopos Inmunodominantes , Senegal
5.
Front Cell Infect Microbiol ; 12: 901253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782147

RESUMEN

Malaria, an infection caused by apicomplexan parasites of the genus Plasmodium, continues to exact a significant toll on public health with over 200 million cases world-wide, and annual deaths in excess of 600,000. Considerable progress has been made to reduce malaria burden in endemic countries in the last two decades. However, parasite and mosquito resistance to frontline chemotherapies and insecticides, respectively, highlights the continuing need for the development of safe and effective vaccines. Here we describe the development of recombinant human antibodies to three target proteins from Plasmodium falciparum: reticulocyte binding protein homologue 5 (PfRH5), cysteine-rich protective antigen (PfCyRPA), and circumsporozoite protein (PfCSP). All three proteins are key targets in the development of vaccines for blood-stage or pre-erythrocytic stage infections. We have developed potent anti-PfRH5, PfCyRPA and PfCSP monoclonal antibodies that will prove useful tools for the standardisation of assays in preclinical research and the assessment of these antigens in clinical trials. We have generated some very potent anti-PfRH5 and anti-PfCyRPA antibodies with some clones >200 times more potent than the polyclonal anti-AMA-1 antibodies used for the evaluation of blood stage antigens. While the monoclonal and polyclonal antibodies are not directly comparable, the data provide evidence that these new antibodies are very good at blocking invasion. These antibodies will therefore provide a valuable resource and have potential as biological standards to help harmonise pre-clinical malaria research.


Asunto(s)
Anticuerpos Monoclonales , Plasmodium falciparum , Animales , Anticuerpos Antiprotozoarios , Proteínas Portadoras , Eritrocitos , Humanos
6.
J Neurol Neurosurg Psychiatry ; 93(9): 960-971, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35835468

RESUMEN

BACKGROUND: SARS-CoV-2 mRNA vaccination of healthy individuals is highly immunogenic and protective against severe COVID-19. However, there are limited data on how disease-modifying therapies (DMTs) alter SARS-CoV-2 mRNA vaccine immunogenicity in patients with autoimmune diseases. METHODS: As part of a prospective cohort study, we investigated the induction, stability and boosting of vaccine-specific antibodies, B cells and T cells in patients with multiple sclerosis (MS) on different DMTs after homologous primary, secondary and booster SARS-CoV-2 mRNA vaccinations. Of 126 patients with MS analysed, 105 received either anti-CD20-based B cell depletion (aCD20-BCD), fingolimod, interferon-ß, dimethyl fumarate, glatiramer acetate, teriflunomide or natalizumab, and 21 were untreated MS patients for comparison. RESULTS: In contrast to all other MS patients, and even after booster, most aCD20-BCD- and fingolimod-treated patients showed no to markedly reduced anti-S1 IgG, serum neutralising activity and a lack of receptor binding domain-specific and S2-specific B cells. Patients receiving fingolimod additionally lacked spike-reactive CD4+ T cell responses. The duration of fingolimod treatment, rather than peripheral blood B and T cell counts prior to vaccination, determined whether a humoral immune response was elicited. CONCLUSIONS: The lack of immunogenicity under long-term fingolimod treatment demonstrates that functional immune responses require not only immune cells themselves, but also access of these cells to the site of inoculation and their unimpeded movement. The absence of humoral and T cell responses suggests that fingolimod-treated patients with MS are at risk for severe SARS-CoV-2 infections despite booster vaccinations, which is highly relevant for clinical decision-making and adapted protective measures, particularly considering additional recently approved sphingosine-1-phosphate receptor antagonists for MS treatment.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Clorhidrato de Fingolimod/uso terapéutico , Humanos , Inmunidad Celular , Esclerosis Múltiple/tratamiento farmacológico , Estudios Prospectivos , ARN Mensajero , SARS-CoV-2 , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
7.
Curr Med Chem ; 29(15): 2736-2747, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34736375

RESUMEN

BACKGROUND: Chronic infection with hepatitis C virus (HCV) is among the major causes of hepatic fibrosis, cirrhosis, as well as hepatocellular carcinoma (HCC), and it is associated with a significant risk of developing lymphoproliferative disorders. The rate of clinical disease progression is variable depending on multiple host and viral factors, including immune response. METHODS: To perform a comprehensive epitope mapping of anti-HCV antibodies in patients suffering from HCV-related liver or lymphoproliferative diseases, we analyzed clinical samples on a peptide microarray platform made of 5952 overlapping 15-mer synthetic peptides derived from the whole HCV proteome. We evaluated the antibody profile of 71 HCV-positive patients diagnosed with HCC, mixed cryoglobulinemia (MC), and HCV chronic infection. Antibody reactivity against virus peptides was detected in all HCVpositive patients. Importantly, the signal amplitude varied significantly within and between diverse patient groups. RESULTS: Antibody reactivity against C peptides were found generally low in HCV chronically infected asymptomatic subjects and increasingly high in HCC and MC patients. Moreover, we found a statistically significant higher IgG response in HCC and MC patients against specific domains of HCV C, E2, NS3, NS4A, NS4B, NS5A, and p7 compared to HCV-positive subjects. CONCLUSION: In conclusion, our data suggest that immune response against specific HCV protein domains may represent useful biomarkers of disease progression among HCVpositive patients and suggest that peptide microarrays are good tools for the screening of immunotherapy targets in preclinical HCV research.


Asunto(s)
Carcinoma Hepatocelular , Crioglobulinemia , Hepatitis C , Neoplasias Hepáticas , Carcinoma Hepatocelular/complicaciones , Crioglobulinemia/complicaciones , Progresión de la Enfermedad , Hepacivirus , Hepatitis C/complicaciones , Humanos , Inmunidad , Neoplasias Hepáticas/complicaciones , Análisis por Micromatrices , Péptidos
8.
Eur J Immunol ; 51(7): 1839-1849, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33772767

RESUMEN

Humoral immunity to the Severe Adult Respiratory Syndrome (SARS) Coronavirus (CoV)-2 is not fully understood yet but is a crucial factor of immune protection. The possibility of antibody cross-reactivity between SARS-CoV-2 and other human coronaviruses (HCoVs) would have important implications for immune protection but also for the development of specific diagnostic ELISA tests. Using peptide microarrays, n = 24 patient samples and n = 12 control samples were screened for antibodies against the entire SARS-CoV-2 proteome as well as the Spike (S), Nucleocapsid (N), VME1 (V), R1ab, and Protein 3a (AP3A) of the HCoV strains SARS, MERS, OC43, and 229E. While widespread cross-reactivity was revealed across several immunodominant regions of S and N, IgG binding to several SARS-CoV-2-derived peptides provided statistically significant discrimination between COVID-19 patients and controls. Selected target peptides may serve as capture antigens for future, highly COVID-19-specific diagnostic antibody tests.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , Análisis por Matrices de Proteínas/métodos , SARS-CoV-2/inmunología , Proteínas Virales/inmunología , Adulto , Anciano , Secuencia de Aminoácidos/genética , Anticuerpos Antivirales/inmunología , Coronavirus Humano 229E/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Coronavirus Humano OC43/inmunología , Reacciones Cruzadas/inmunología , Pruebas Diagnósticas de Rutina , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Fosfoproteínas/inmunología , Proteoma/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
9.
EBioMedicine ; 54: 102699, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32330875

RESUMEN

BACKGROUND: The extracellular signal-regulated kinase (ERK) pathway regulates cell growth, and is hyper-activated and associated with drug resistance in hepatocellular carcinoma (HCC). Metabolic pathways are profoundly dysregulated in HCC. Whether an altered metabolic state is linked to activated ERK pathway and drug response in HCC is unaddressed. METHODS: We deprived HCC cells of glutamine to induce metabolic alterations and performed various assays, including metabolomics (with 13C-glucose isotope tracing), microarray analysis, and cell proliferation assays. Glutamine-deprived cells were also treated with kinase inhibitors (e.g. Sorafenib, Erlotinib, U0126 amongst other MEK inhibitors). We performed bioinformatics analysis and stratification of HCC tumour microarrays to determine upregulated ERK gene signatures in patients. FINDINGS: In a subset of HCC cells, the withdrawal of glutamine triggers a severe metabolic alteration and ERK phosphorylation (pERK). This is accompanied by resistance to the anti-proliferative effect of kinase inhibitors, despite pERK inhibition. High intracellular serine is a consistent feature of an altered metabolic state and contributes to pERK induction and the kinase inhibitor resistance. Blocking the ERK pathway facilitates cell proliferation by reprogramming metabolism, notably enhancing aerobic glycolysis. We have identified 24 highly expressed ERK gene signatures that their combined expression strongly indicates a dysregulated metabolic gene network in human HCC tissues. INTERPRETATION: A severely compromised metabolism lead to ERK pathway induction, and primes some HCC cells to pro-survival phenotypes upon ERK pathway blockade. Our findings offer novel insights for understanding, predicting and overcoming drug resistance in liver cancer patients. FUND: DFG, BMBF and Sino-German Cooperation Project.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Resistencia a Antineoplásicos , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas , Antineoplásicos/toxicidad , Carcinoma Hepatocelular/genética , Proliferación Celular , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Metaboloma , Inhibidores de Proteínas Quinasas/toxicidad , Transcriptoma
10.
Ann Diagn Pathol ; 41: 24-37, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31132649

RESUMEN

PD-L1 is a surface molecule which is expressed on different types of cells, including antigen presenting cells, vascular endothelial cells and other cells of human tissues. Expression of PD-L1 is also found on human tumor cells. PD-L1 as the ligand to PD1 receptor molecule of CD8+ T cells inhibits its cytotoxic effect on the tumor cell. The modern target therapy uses this interaction to inhibit the PD-1 molecule of T cells to stimulate tumor necrosis. To compare expression differences, twelve frequent types of malignant tumors with ten patients per group were selected. Immunohistochemical stains with different antibodies for PD-L1 (DAKO, Spring Bioscience, Ventana, Cell Signaling, Biocare Medical, Abcam, Zeta Corporation) were performed, analyzed and compared. To summarize, we detected variable expression pattern of PD-L1 with general higher mean value of expression of tumor cells with clone SP263 in most tumor groups. In the comparison of selected cases of lung cancer, therapy relevant differences of PD-L1 expression on tumor cells with different antibodies were observed. Additionally, the profiling study of several PD-L1-antibody clones (28-8 Abcam and 28-8 DAKO, SP142, SP263) with Signal-to-Amino Acid Residue Plots was performed with interesting findings of cross-activity of SP142 with two peptides from PD-1, which can explain why clone SP142 stains immune cells more intensively, as previously published.


Asunto(s)
Anticuerpos Monoclonales , Antígeno B7-H1/análisis , Biomarcadores de Tumor/análisis , Neoplasias , Especificidad de Anticuerpos , Células Clonales , Reacciones Cruzadas , Humanos , Inmunohistoquímica/métodos
11.
J Infect Dis ; 220(2): 228-232, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-30815685

RESUMEN

A human cytomegalovirus (HCMV) vaccine is urgently needed to protect against primary infection and enhance existing immunity in HCMV-infected individuals (HCMV+). Using sera from HCMV+ glycoprotein B/MF59 vaccine recipients prior to transplant, we investigated the composition of the immune response. Vaccination boosted preexisting humoral responses in our HCMV+ cohort but did not promote de novo responses against novel linear epitopes. This suggests that prior natural infection has a profound effect on shaping the antibody repertoire and subsequent response to vaccination ("original antigenic sin"). Thus, vaccination of HCMV+ may require strategies of epitope presentation distinct from those intended to prevent primary infection.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Vacunas contra Citomegalovirus/inmunología , Citomegalovirus/inmunología , Escualeno/inmunología , Proteínas del Envoltorio Viral/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Citomegalovirus/virología , Método Doble Ciego , Epítopos/inmunología , Humanos , Polisorbatos , Vacunación/métodos
12.
PLoS One ; 12(6): e0179124, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28604802

RESUMEN

BACKGROUND: Epstein-Barr-Virus (EBV) plays an important role as trigger or cofactor for various autoimmune diseases. In a subset of patients with Chronic Fatigue Syndrome (CFS) disease starts with infectious mononucleosis as late primary EBV-infection, whereby altered levels of EBV-specific antibodies can be observed in another subset of patients. METHODS: We performed a comprehensive mapping of the IgG response against EBV comparing 50 healthy controls with 92 CFS patients using a microarray platform. Patients with multiple sclerosis (MS), systemic lupus erythematosus (SLE) and cancer-related fatigue served as controls. 3054 overlapping peptides were synthesised as 15-mers from 14 different EBV proteins. Array data was validated by ELISA for selected peptides. Prevalence of EBV serotypes was determined by qPCR from throat washing samples. RESULTS: EBV type 1 infections were found in patients and controls. EBV seroarray profiles between healthy controls and CFS were less divergent than that observed for MS or SLE. We found significantly enhanced IgG responses to several EBNA-6 peptides containing a repeat sequence in CFS patients compared to controls. EBNA-6 peptide IgG responses correlated well with EBNA-6 protein responses. The EBNA-6 repeat region showed sequence homologies to various human proteins. CONCLUSION: Patients with CFS had a quite similar EBV IgG antibody response pattern as healthy controls. Enhanced IgG reactivity against an EBNA-6 repeat sequence and against EBNA-6 protein is found in CFS patients. Homologous sequences of various human proteins with this EBNA-6 repeat sequence might be potential targets for antigenic mimicry.


Asunto(s)
Infecciones por Virus de Epstein-Barr/sangre , Infecciones por Virus de Epstein-Barr/inmunología , Síndrome de Fatiga Crónica/sangre , Síndrome de Fatiga Crónica/inmunología , Herpesvirus Humano 4/inmunología , Adulto , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Biomarcadores , Reacciones Cruzadas , Ensayo de Inmunoadsorción Enzimática , Epítopos/inmunología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/virología , Síndrome de Fatiga Crónica/complicaciones , Síndrome de Fatiga Crónica/epidemiología , Femenino , Herpesvirus Humano 4/clasificación , Herpesvirus Humano 4/genética , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Prevalencia , Análisis por Matrices de Proteínas , Carga Viral
13.
Kidney Int ; 90(2): 373-388, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27344203

RESUMEN

A substantial portion of the human population is affected by urogenital birth defects resulting from a failure in ureter development. Although recent research suggests roles for several genes in facilitating the ureter/bladder connection, the underlying molecular mechanisms remain poorly understood. Signaling via Eph receptor tyrosine kinases is involved in several developmental processes. Here we report that impaired Eph/Ephrin signaling in genetically modified mice results in severe hydronephrosis caused by defective ureteric bud induction, ureter maturation, and translocation. Our data imply that ureter translocation requires apoptosis in the urogenital sinus and inhibition of proliferation in the common nephric duct. These processes were disturbed in EphA4/EphB2 compound knockout mice and were accompanied by decreased ERK-2 phosphorylation. Using a set of Eph, Ephrin, and signaling-deficient mutants, we found that during urogenital development, different modes of Eph/Ephrin signaling occur at several sites with EphrinB2 and EphrinA5 acting in concert. Thus, Eph/Ephrin signaling should be considered in the etiology of congenital kidney and urinary tract anomalies.


Asunto(s)
Efrina-A5/metabolismo , Efrina-B2/metabolismo , Hidronefrosis/genética , Receptor EphA4/metabolismo , Receptor EphB2/metabolismo , Anomalías Urogenitales/genética , Animales , Apoptosis , Humanos , Hidronefrosis/metabolismo , Riñón/embriología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Técnicas de Cultivo de Órganos , Organogénesis/genética , Fosforilación , Receptor EphA4/genética , Receptor EphB2/genética , Transducción de Señal , Uréter/embriología , Anomalías Urogenitales/metabolismo
14.
Mol Oncol ; 10(6): 806-24, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26887594

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) clinically has a very poor prognosis. No small molecule is available to reliably achieve cures. Meisoindigo is chemically related to the natural product indirubin and showed substantial efficiency in clinical chemotherapy for CML in China. However, its effect on PDAC is still unknown. Our results showed strong anti-proliferation effect of meisoindigo on gemcitabine-resistant PDACs. Using a recently established primary PDAC cell line, called Jopaca-1 with a larger CSCs population as model, we observed a reduction of CD133+ and ESA+/CD44+/CD24+ populations upon treatment and concomitantly a decreased expression of CSC-associated genes, and reduced cellular mobility and sphere formation. Investigating basic cellular metabolic responses, we detected lower oxygen consumption and glucose uptake, while intracellular ROS levels increased. This was effectively neutralized by the addition of antioxidants, indicating an essential role of the cellular redox balance. Further analysis on energy metabolism related signaling revealed that meisoindigo inhibited LKB1, but activated AMPK. Both of them were involved in cellular apoptosis. Additional in situ hybridization in tissue sections of PDAC patients reproducibly demonstrated co-expression and -localization of LKB1 and CD133 in malignant areas. Finally, we detected that CD133+/CD44+ were more vulnerable to meisoindigo, which could be mimicked by LKB1 siRNAs. Our results provide the first evidence, to our knowledge, that LKB1 sustains the CSC population in PDACs and demonstrate a clear benefit of meisoindigo in treatment of gemcitabine-resistant cells. This novel mechanism may provide a promising new treatment option for PDAC.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Páncreas/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Quinasas de la Proteína-Quinasa Activada por el AMP , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Indoles/farmacología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Gemcitabina , Neoplasias Pancreáticas
15.
Eur J Med Chem ; 108: 245-257, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26686930

RESUMEN

A series of 4H-1,2,3-thiadiazolo[5,4-b]indoles were synthesized by novel tandem of oxidative cyclization of 3-alkoxycarbonylhydrazonoindoline-2-thiones, 1,5-H-shift and elimination of tert-butoxy(ethoxy)carbonyl group. The simple method for their modifications by the reactions with electrophilic agents were elaborated and as a result of the synthetic investigation a number of N-alkyl-, N-acyl- and N-sulfonyl-4H-1,2,3-thiadiazolo[5,4-b]indoles were prepared in good yields. Preliminary biological tests for the three examples of synthesized compounds with different substituents at the nitrogen atom indole ring have shown that the biological behavior of the investigated 1,2,3-thiadiazolo[5,4-b]indoles is substantially directed by this structural fragment.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Indoles/síntesis química , Indoles/farmacología , Tiadiazoles/síntesis química , Tiadiazoles/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Humanos , Indoles/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Tiadiazoles/química
16.
J Med Chem ; 58(24): 9591-600, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26595649

RESUMEN

Organometallics with N-heterocyclic carbene (NHC) ligands have triggered major interest in inorganic medicinal chemistry. Complexes of the type Rh(I)(NHC)(COD)X (where X is Cl or I, COD is cyclooctadiene, and NHC is a dimethylbenzimidazolylidene) represent a promising type of new metallodrugs that have been explored by advanced biomedical methods only recently. In this work, we have synthesized and characterized several complexes of this type. As observed by mass spectrometry, these complexes remained stable over at least 3 h in aqueous solution, after which hydrolysis of the halido ligands occurred and release of the NHC ligand was evident. Effects against mitochondria and general cell tumor metabolism were noted at higher concentrations, whereas phosphorylation of HSP27, p38, ERK1/2, FAK, and p70S6K was induced substantially already at lower exposure levels. Regarding the antiproliferative activity in tumor cells, a clear preference for iodido over chlorido secondary ligands was noted, as well as effects of the substituents of the NHC ligand.


Asunto(s)
Antineoplásicos/química , Bencimidazoles/química , Complejos de Coordinación/química , Ciclooctanos/química , Rodio , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Bencimidazoles/síntesis química , Bencimidazoles/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Ciclooctanos/síntesis química , Ciclooctanos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Estabilidad de Medicamentos , Humanos , Hidrólisis , Mitocondrias/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
17.
Metallomics ; 6(9): 1591-601, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24777153

RESUMEN

Due to their broad spectrum of biological activity and antiproliferative effect on different human cancer cell lines, gold compounds have been in the focus of drug research for many years. Gold(I)-N-heterocyclic carbene complexes are of particular interest, because of their stability, ease of derivatization and clear cytotoxicity in cancer cells. To obtain a more detailed view of the molecular mechanisms underlying their cellular activity, we used a novel gold(I)-N-heterocyclic carbene complex, [triphenylphosphane-(1,3-diethyl-5-methoxy-benzylimidazol-2-ylidene)]gold(I) iodide and investigated changes in cellular signaling pathways using quantitative signal transduction protein microarray analysis. We also analyzed changes in cell metabolism in a time-dependent manner by on-line metabolic measurements and used isolated mitochondria to elucidate the direct effects on this cell organelle. We found strong cytotoxic effects in cancer cells, accompanied by an immediate and irreversible loss of mitochondrial respiration as well as by a crucial imbalance of the intracellular redox state, resulting in apoptotic cell death. ELISA microarray analysis of signal transduction pathways revealed a time-dependent up-regulation of pro-apoptotic signaling proteins, e.g. p38 and JNK, whereas pro-survival signals that are directly linked to the thioredoxin system were down-regulated, which pinpoints to thioredoxin reductase as a central target of the compound. Further results suggest that DNA is an indirect target of the compound. Based on our findings, we outline a signaling model for the molecular mechanism underlying the antiproliferative activity of the gold(I)-N-heterocyclic carbene complex investigated, which provides a good general model for the known pattern of cell death induced by this class of substances.


Asunto(s)
Apoptosis/efectos de los fármacos , Oro/farmacología , Compuestos Heterocíclicos/farmacología , Metano/análogos & derivados , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Compuestos Heterocíclicos/química , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Metano/química , Metano/farmacología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Neoplasias/patología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo
18.
BMC Genomics ; 13: 298, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22748179

RESUMEN

BACKGROUND: Both bone morphogenetic proteins (BMPs) and histone deacetylases (HDACs) have previously been established to play a role in the development of the three major cell types of the central nervous system: neurons, astrocytes, and oligodendrocytes. We have previously established a connection between these two protein families, showing that HDACs suppress BMP-promoted astrogliogenesis in the embryonic striatum. Since HDACs act in the nucleus to effect changes in transcription, an unbiased analysis of their transcriptional targets could shed light on their downstream effects on BMP-signaling. RESULTS: Using neurospheres from the embryonic striatum as an in vitro system to analyze this phenomenon, we have performed microarray expression profiling on BMP2- and TSA-treated cultures, followed by validation of the findings with quantitative RT-PCR and protein analysis. In BMP-treated cultures we first observed an upregulation of genes involved in cell-cell communication and developmental processes such as members of BMP and canonical Wnt signaling pathways. In contrast, in TSA-treated cultures we first observed an upregulation of genes involved in chromatin modification and transcription. Interestingly, we could not record direct changes in the protein levels of canonical members of BMP2 signaling, but we did observe an upregulation of both the transcription factor STAT3 and its active isoform phospho-STAT3 at the protein level. CONCLUSIONS: STAT3 and SMAD1/5/8 interact synergistically to promote astrogliogenesis, and thus we show for the first time that HDACs act to suppress BMP-promoted astrogliogenesis by suppression of the crucial partner STAT3.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Histona Desacetilasas/metabolismo , Prosencéfalo/citología , Prosencéfalo/embriología , Animales , Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Ácidos Hidroxámicos/farmacología , Ratones , Prosencéfalo/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Proteína Smad8/genética , Proteína Smad8/metabolismo
19.
J Immunol Methods ; 380(1-2): 10-5, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22484508

RESUMEN

Antibody microarrays with enzyme-linked immunosorbent technology are used for quantitative, simultaneous and high-throughput analysis of multiple proteins in a single probe. Kinetic detection can significantly improve precision and quantification range of microarray measurements. Here we present the open source software Kinetic Operating Microarray Analyzer (KOMA) that enables calibration and high-throughput analysis of quantitative microarray data collected using a time-resolved kinetic detection protocol of the enzymatic signal. This tool can also be helpful for analyzing data from any other analytical assays employing enzymatic signal amplification, in which a broader range of quantification is reached by the time-resolved recording of readouts. KOMA is open for download at http://www.uni-heidelberg.de/fakultaeten/biowissenschaften/ipmb/biologie/woelfl/Research.html together with a set of test raw data and requires R version 2.12 and Java RE version 6.0.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/normas , Análisis por Matrices de Proteínas/normas , Programas Informáticos , Calibración , Interpretación Estadística de Datos , Células HT29 , Humanos
20.
PLoS One ; 6(5): e19714, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21603599

RESUMEN

Since the discovery of cisplatin more than 40 years ago and its clinical introduction in the 1970s an enormous amount of research has gone into elucidating the mechanism of action of cisplatin on tumor cells. With a novel cell biosensor chip system allowing continuous monitoring of respiration, glycolysis, and impedance we followed cisplatin treatment of different cancer cell lines in real-time. Our measurements reveal a first effect on respiration, in all cisplatin treated cell lines, followed with a significant delay by interference with glycolysis in HT-29, HCT-116, HepG2, and MCF-7 cells but not in the cisplatin-resistant cell line MDA-MB-231. Most strikingly, cell death started in all cisplatin-sensitive cell lines within 8 to 11 h of treatment, indicating a clear time frame from exposure, first response to cisplatin lesions, to cell fate decision. The time points of most significant changes were selected for more detailed analysis of cisplatin response in the breast cancer cell line MCF-7. Phosphorylation of selected signal transduction mediators connected with cellular proliferation, as well as changes in gene expression, were analyzed in samples obtained directly from sensor chips at the time points when changes in glycolysis and impedance occurred. Our online cell biosensor measurements reveal for the first time the time scale of metabolic response until onset of cell death under cisplatin treatment, which is in good agreement with models of p53-mediated cell fate decision.


Asunto(s)
Técnicas Biosensibles/métodos , Muerte Celular/efectos de los fármacos , Cisplatino/farmacología , Línea Celular Tumoral , Proliferación Celular , Respiración de la Célula/efectos de los fármacos , Resistencia a Antineoplásicos , Expresión Génica , Glucólisis/efectos de los fármacos , Humanos , Fosforilación , Transducción de Señal , Proteína p53 Supresora de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...