Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 15418, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723193

RESUMEN

This study aims to enhance the CZTS device's overall efficiency, the key research area has been identified in this study is to explore the effects of a novel, low-cost, and simplified, deposition method to improve the optoelectronic properties of the buffer layer in the fabrication of CZTS thin film solar cells. Herein, an effective way of addressing this challenge is through adjusting the absorbers' structure by the concept of doping, sensitized CdS thin film by the bi-functional linker, and an environmentally friendly catalytic green agent. The Linker Assisted and Chemical Bath Deposition (LA-CBD) method was introduced as an innovative and effective hybrid sensitization approach. In the one-step synthesis process, Salvia dye, Ag, and 3-Mercaptopropionic acid (MPA) were used. Generally, the results for all samples displayed varying bandgap as achieved between (2.21-2.46) eV, hexagonal structure with considerably decreased strain level, broader grain size, and dramatically enhanced crystalline property. Hence, the rudimentary CdS/CZTS solar cell devices were fabricated for the application of these novel CdS films. Preliminary CZTS thin film solar cell fabrication results in the highest conversion efficiency of 0.266% obtained CdS + Salvia dye, indicating the potential use of the CdS films as a buffer layer for CZTS photovoltaic devices.

2.
RSC Adv ; 12(46): 29613-29626, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36321103

RESUMEN

A high-quality buffer layer serves as one of the most significant issues that influences the efficiency of solar cells. Doping in semiconductors is an important strategy that can be used to control the reaction growth. In this study, the influence of Ag doping on the morphological, optical and electrical properties of CdS thin films have been obtained. Herein, we propose the mechanism of CdS film formation with and without Ag ions, and we found that changes in the reaction of preparing CdS by the chemical bath deposition (CBD) method cause a shift in the geometric composition of the CdS film. XRD showed that the position of peaks in the doped films are displaced to wider angles, indicating a drop in the crystal lattice constant. The optical analysis confirmed direct transition with an optical energy gap between 2.10 and 2.43 eV. The morphological studies show conglomerates with inhomogeneously distributed spherical grains with an increase of the Ag ratio. The electrical data revealed that the annealed Ag-doped CdS with 5% Ag has the highest carrier concentration (3.28 × 1015 cm-3) and the lowest resistivity (45.2 Ω cm). According to the results, the optimal Ag ratio was obtained at Ag 5%, which encourages the usage of CdS in this ratio as an efficient buffer layer on photovoltaic devices.

4.
Materials (Basel) ; 15(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36079209

RESUMEN

This study investigates the growth time effect on the structural, morphological, optical, and photoelectrochemical characteristics of highly oriented ZnO nanorod arrays (ZNRAs). The nanorod arrays were grown on ITO substrates using the unified sol-gel spin coating and hydrothermal techniques. ZnO nanoparticles (ZNPs) were synthesized using the sol-gel spin coating method. In contrast, the hydrothermal method was used to grow the ZnO nanorods. The hydrothermal growth time investigated was between 4 and 12 h. The synthesized ZNRAs were used as the photoanode electrodes to investigate their photoelectrochemical (PEC) electrode potency. The as-prepared ZNRAs were characterized using various analytical tools to determine their structures, morphologies, optical, and photoelectrochemical traits. EDX spectra showed the presence of uncontaminated ZnO chemical composition, and FTIR spectra displayed the various functional groups in the samples. A rod-shaped ZnO nanocrystallite with mean lengths and diameters of 300-500 nm and 40-90 nm, respectively, is depicted. HRTEM images indicated the nucleation and growth of ZNRAs with a lattice fringe spacing of 0.26 nm and a growth lattice planer orientation of [002]. The optimum ZNRAs (grown at 8 h) as photoelectrode achieved a photoconversion efficiency of 0.46% and photocurrent density of 0.63 mA/cm2, that was 17 times higher than the one shown by ZNPs with Ag/AgCl as the reference electrode. Both values were higher than those reported in the literature, indicating the prospect of these ZNRAs for photoelectrode applications.

5.
Materials (Basel) ; 15(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36143584

RESUMEN

Antimony trisulfide (Sb2Se3), a non-toxic and accessible substance, has possibilities as a material for use in solar cells. The current study numerically analyses Sb2Se3 solar cells through the program Solar Cell Capacitance Simulator (SCAPS). A detailed simulation and analysis of the influence of the Sb2Se3 layer's thickness, defect density, band gap, energy level, and carrier concentration on the devices' performance are carried out. The results indicate that a good device performance is guaranteed with the following values in the Sb2Se3 layer: an 800 optimal thickness for the Sb2Se3 absorber; less than 1015 cm-3 for the absorber defect density; a 1.2 eV optimum band gap; a 0.1 eV energy level (above the valence band); and a 1014 cm-3 carrier concentration. The highest efficiency of 30% can be attained following optimization of diverse parameters. The simulation outcomes offer beneficial insights and directions for designing and engineering Sb2Se3 solar cells.

6.
Heliyon ; 8(7): e09959, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35874070

RESUMEN

This paper reports the structures, morphologies, optical properties, and photoconversion efficiency (η%) of the In2S3/ZnO core-shell heterostructures nanorod arrays (IZCSHNRAs) produced via the controlled successive ionic layer absorption and reaction (SILAR) cycles. As-produced samples were characterized using XRD, FESEM, TEM, UV-Vis, PL, XPS and FTIR techniques. The proposed IZCSHNRAs revealed nearly double photocurrent density and η% values compared to the pure ZnO nanorod arrays (ZNRAs). In addition, the light absorption, crystallinity and microstructures of the specimens were appreciably improved with the increase of the SILAR cycles. The deposited nanoparticles of In2S3 (ISNPs) on the ZNRAs surface was responsible for the improvement in the heterostructures, light absorption and photogenerated electron-hole pairs separation, thus enhancing the photoconversion performance. It is established that a simple SILAR approach can be very useful to produce good quality IZCSHNRAs-based photoelectrodes required for the future development of high performance photoelectrochemical cells (PECs).

7.
Sci Rep ; 12(1): 12521, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869261

RESUMEN

In this study, we aimed to increase the knowledge regarding the response mechanisms which were associated with the formation of CdS thin films. CdS thin film remains the most appealing alternative for many researchers, as it has been a capable buffer material for effect in film based polycrystalline solar cells (CdTe, CIGSe, CZTS). The Linker Assisted and Chemical Bath Deposition (LA-CBD) technique, which combines the Linker Assisted (LA) technique and the chemical bath deposition (CBD) method for forming high quality CdS thin film, was presented as an efficient and novel hybrid sensitization technique. CdS films were bound to soda lime with the help of electrostatic forces, which led to the formation of the intermediate complexes [Cd (NH3)4]2+ that helped in the collision of these complexes with a soda lime slide. Salvia dye and as a linker molecule 3-Mercaptopropionic acid (MPA) was used in the one step fabrication technique. Optical results showed that the bandgap varied in the range of (2.50 to 2.17) eV. Morphological properties showed a homogeneous distribution of the particles that aspherical in shape in the CdS + MPA + Salvia dye films. This technique significantly affected on the electrical characterizations of CdS films after the annealing process. The CdS + Ag + MPA + Salvia dye films showed the maximum carrier concentration and minimum resistivity, as 5.64 × 10 18 cm-3 and 0.83 Ω cm respectively.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Salvia , Compuestos de Cadmio/química , Sulfuros/química , Telurio
8.
Sci Rep ; 12(1): 8099, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577846

RESUMEN

Quantum bandgap buffer layers can improve sunlight absorption in the short wavelength region, hence improving the performance of CIGS solar cells. In this study, we use numerical modelling to determine the impact of various buffer layers' electrical characteristics on the performance of CIGS thin film photovoltaic devices, particularly, carrier concentration and the quantum effect. As well Ag2S buffer layer has been experimentally examined to fulfilment its effect in term of bulk and quantum bandgap. Experimental results depicted that, Ag2S QDs has polycrystalline nature of films, with smooth surface roughness, and average diameter 4 nm. Meanwhile, a simulation revealed that the Fermi level of the (n-buffer layer) material shifts closer to the conduction band with an increase in carrier concentration. The findings indicate that, a buffer layer with a wider bandgap and carrier concentration is an essential demand for achieving a device with a higher conversion efficiency and a broader bandgap-CBO window. It was attributed to beneficial synergistic effects of high carrier concentration and narrower depletion region, which enable carriers to overcome high CBO barrier. Most importantly, modelling results indicate that the optic-electrical characteristics of the buffer layer are critical in determining the progress of a CIGS solar cell.

9.
Materials (Basel) ; 11(5)2018 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-29710822

RESUMEN

Despite its large band gap, ZnO has wide applicability in many fields ranging from gas sensors to solar cells. ZnO was chosen over other materials because of its large exciton binding energy (60 meV) and its stability to high-energy radiation. In this study, ZnO nanorods were deposited on ITO glass via a simple dip coating followed by a hydrothermal growth. The morphological, structural and compositional characteristics of the prepared films were analyzed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible spectroscopy (UV-Vis). Photoelectrochemical conversion efficiencies were evaluated via photocurrent measurements under calibrated halogen lamp illumination. Thin film prepared at 120 °C for 4 h of hydrothermal treatment possessed a hexagonal wurtzite structure with the crystallite size of 19.2 nm. The average diameter of the ZnO nanorods was 37.7 nm and the thickness was found to be 2680.2 nm. According to FESEM images, as the hydrothermal growth temperature increases, the nanorod diameter become smaller. Moreover, the thickness of the nanorods increase with the growth time. Therefore, the sample prepared at 120 °C for 4 h displayed an impressive photoresponse by achieving high current density of 0.1944 mA/cm².

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...