Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(14): e202303805, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38064536

RESUMEN

Radioimmunotherapy (RIT) is a promising alternative to conventional treatment options. Here, we present experimental work on the synthesis, radiochemistry, and in vivo performance of a lanthanoid-selective nonadentate bispidine ligand suitable for 177 Lu3+ ion complexation. The ligand (bisp,1) was derivatised with a photoactivatable aryl azide (ArN3 ) group as a bioconjugation handle for light-induced labelling of proteins. Quantitative radiosynthesis of [177 Lu]Lu-1+ was accomplished in 10 minutes at 40 °C. Subsequent incubation of [177 Lu]Lu-1+ with trastuzumab, followed by irradiation with light at 365 nm for 15 min, at room temperature and pH 8.0-8.3, gave the radiolabelled mAb, [177 Lu]Lu-1-azepin-trastuzumab ([177 Lu]Lu-1-mAb) in a decay-corrected radiochemical yield of 14 %, and radiochemical purity (RCP)>90 %. Stability studies and cellular binding assays in vitro using the SK-OV-3 human ovarian cancer cells confirmed that [177 Lu]Lu-1-mAb remained biological active and displayed specific binding to HER2/neu. Experiments in immunocompromised female athymic nude mice bearing subcutaneous xenograft models of SK-OV-3 tumours revealed significantly higher tumour uptake in the normal group compared with the control block group (29.8±11.4 %ID g-1 vs. 14.8±6.1 %ID g-1 , respectively; P-value=0.037). The data indicate that bispidine-based ligand systems are suitable starting points for constructing novel, high-denticity chelators for specific complexation of larger radiotheranostic metal ion nuclides.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Neoplasias , Radioisótopos , Receptor ErbB-2 , Animales , Ratones , Humanos , Femenino , Trastuzumab , Ratones Desnudos , Ligandos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Lutecio
2.
Mol Pharm ; 20(12): 6463-6473, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37978936

RESUMEN

The gastrin-releasing peptide receptor (GRPr) is overexpressed in various cancer types including prostate and breast carcinomas, making it an attractive target for molecular imaging and therapy. In this work, we designed a novel GRPr antagonistic probe comprising metal chelator NODIA-Me. This 1,4,7-triazacyclononane-based chelator forms positively charged metal complexes due to its neutral methylimidazole arms. Because a positive charge at the N-terminus of GRPr conjugates is responsible for high receptor affinity as exemplified by the current gold standard DOTA-RM2, we investigated if a positively charged radiometal complex can be used as a pharmacokinetic modifier to also produce high-affinity GRPr conjugates. In this respect, the bioconjugate NODIA-Me-Ahx-JMV594 was prepared by a combination of solid-phase peptide synthesis and solution-based reactions in a 94% yield. Radiolabeling provided the 68Ga-labeled conjugate in radiochemical yields of >95% and radiochemical purities of >98% with mean molar activities of Am ∼17 MBq nmol-1. The competitive GRPr affinity of the metal-free and 69/71Ga-labeled conjugate was determined to be IC50 = 0.41 ± 0.06 and 1.45 ± 0.06 nM, respectively. The metal-free GRPr antagonist DOTA-RM2 and its corresponding 69/71Ga complex had IC50 values of 1.42 ± 0.07 and 0.98 ± 0.19 nM, respectively. Small-animal PET imaging of mice bearing GRPr(+) PC-3 tumors revealed high radioactivity accumulation in the tumors and in the pancreas as an organ with high levels of GRPr expression. These findings were corroborated by the corresponding ex vivo biodistribution data, in which the tumors and the pancreas exhibited the highest radioactivity accumulation. By coinjection of an excess of NODIA-Me-Ahx-JMV594, uptake in the tumors and GRPr(+) organs was significantly reduced, confirming specific receptor-mediated uptake. The estrogen receptor-positive tumor of a female breast cancer patient was clearly visualized by PET imaging using 68Ga-labeled NODIA-Me-Ahx-JMV594. To summarize, the positive charge at the N-terminus of the conjugate induced by the Ga(NODIA-Me) complex resulted in high GRPr affinity comparable to that of the potent antagonist DOTA-RM2. The conjugate NODIA-Me-Ahx-JMV594 is a promising probe for imaging of GRPr tumors that warrants further evaluation in larger patient cohorts as well as in combination with other radiometals.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Receptores de Bombesina/metabolismo , Radioisótopos de Galio , Distribución Tisular , Línea Celular Tumoral , Neoplasias de la Próstata/metabolismo , Quelantes/química , Tomografía de Emisión de Positrones/métodos , Bombesina/farmacocinética
3.
Animals (Basel) ; 13(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37508142

RESUMEN

Fluorescence-guided surgery can aid in the intraoperative visualization of target tissues, with promising applications in human and veterinary surgical oncology. The aim of this study was to evaluate the performances of two fluoresce camera systems, IC-FlowTM and VisionsenseTM VS3 Iridum, for the detection of two non-targeted (ICG and IRDye-800) and two targeted fluorophores (AngiostampTM and FAP-Cyan) under different room light conditions, including ambient light, new generation LED, and halogen artificial light sources, which are commonly used in operating theaters. Six dilutions of the fluorophores were imaged in phantom kits using the two camera systems. The limit of detection (LOD) and mean signal-to-background ratio (mSBR) were determined. The highest values of mSBR and a lower LOD were obtained in dark conditions for both systems. Under room lights, the capabilities decreased, but the mSBR remained greater than 3 (=clearly detectable signal). LOD and mSBR worsened under surgical lights for both camera systems, with a greater impact from halogen bulbs on VisionsenseTM VS3 Iridium and of the LED lights on IC-Flow due to a contribution of these lights in the near-infrared spectrum. When considering implementing FGS into the clinical routine, surgeons should cautiously evaluate the spectral contribution of the lights in the operating theater.

4.
Inorg Chem ; 62(50): 20677-20687, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37487036

RESUMEN

Herein, we present the synthesis and coordination chemistry of copper(II) and zinc(II) complexes of two novel heterocyclic triazacyclononane (tacn)-based chelators (HNODThia and NODThia-AcNHEt). The chelator HNODThia was further derivatized to obtain a novel PSMA-based bioconjugate (NODThia-PSMA) and a bifunctional photoactivatable azamacrocyclic analogue, NODThia-PEG3-ArN3, for the development of copper-64 radiopharmaceuticals. 64Cu radiolabeling experiments were performed on the different metal-binding chelates, whereby quantitative radiochemical conversion (RCC) was obtained in less than 10 min at room temperature. The in vitro stability of NODThia-PSMA in human plasma was assessed by ligand-challenge and copper-exchange experiments. Next, we investigated the viability of the photoactivatable analog (NODThia-PEG3-ArN3) for the light-induced photoradiosynthesis of radiolabeled proteins. One-pot photoconjugation reactions to human serum albumin (HSA) as a model protein and the clinically relevant monoclonal antibody formulation MetMAb were performed. [64Cu]Cu-7-azepin-HSA and [64Cu]Cu-7-azepin-onartuzumab were prepared in less than 15 min by irradiation at 395 nm, with radiochemical purities (RCP) of >95% and radiochemical yields (RCYs) of 42.7 ± 5.3 and 49.6%, respectively. Together, the results obtained here open the way for the development of highly stable 64Cu-radiopharmaceuticals by using aza-heterocyclic tacn-based chelators, and the method can easily be extended to the development of 67Cu radiopharmaceuticals for future applications in molecularly targeted radio(immuno)therapy.


Asunto(s)
Compuestos Aza , Quelantes , Humanos , Quelantes/química , Radiofármacos/química , Cobre , Radioisótopos de Cobre/química , Tomografía de Emisión de Positrones/métodos
5.
RSC Chem Biol ; 4(7): 494-505, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37415866

RESUMEN

Late-stage prostate cancer often acquires resistance to conventional chemotherapies and transforms into a hormone-refractory, drug-resistant, and non-curative disease. Developing non-invasive tools to detect the biochemical changes that correlate with drug efficacy and reveal the onset of drug resistance would have important ramifications in managing the treatment regimen for individual patients. Here, we report the selection of new Designed Ankyrin Repeat Proteins (DARPins) that show high affinity toward prostate-specific antigen (PSA), a biomarker used in clinical monitoring of prostate cancer. Ribosome display and in vitro screening tools were used to select PSA-binding DARPins based on their binding affinity, selectivity, and chemical constitution. Surface plasmon resonance measurements demonstrated that the four lead candidates bind to PSA with nanomolar affinity. DARPins were site-specifically functionalised at a unique C-terminal cysteine with a hexadentate aza-nonamacrocyclic chelate (NODAGA) for subsequent radiolabelling with the positron-emitting radionuclide 68Ga. [68Ga]GaNODAGA-DARPins showed high stability toward transchelation and were stable in human serum for >2 h. Radioactive binding assays using streptavidin-loaded magnetic beads confirmed that the functionalisation and radiolabelling did not compromise the specificity of [68Ga]GaNODAGA-DARPins toward PSA. Biodistribution experiments in athymic nude mice bearing subcutaneous prostate cancer xenografts derived from the LNCaP cell line revealed that three of the four [68Ga]GaNODAGA-DARPins displayed specific tumour-binding in vivo. For DARPin-6, tumour-uptake in the normal group reached 4.16 ± 0.58% ID g-1 (n = 3; 2 h post-administration) and was reduced by ∼50% by competitive binding with a low molar activity formulation (blocking group: 2.47 ± 0.42% ID g-1; n = 3; P value = 0.018). Collectively, the experimental results support the future development of new PSA-specific imaging agents for potential use in monitoring the efficacy of androgen receptor (AR)-targeted therapies.

6.
J Am Chem Soc ; 145(23): 12894-12910, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37272851

RESUMEN

The self-assembly of molecularly interlocked molecules offers new opportunities for creating bioactive molecules for applications in medicine. Cooperative capture synthesis of heterorotaxanes in water is an attractive methodology for developing multifunctional supramolecular imaging agents or drugs, but derivatizing the rotaxane scaffold with biologically active vectors like peptides and proteins, or reporter probers like radioactive metal ion complexes and fluorophores, requires the installation of reactive functional groups. Here, we explored the chemical scope of ß-cyclodextrin (ß-CD) derivatization on the cucurbit[6]uril (CB[6])-mediated cooperative capture synthesis of hetero[4]rotaxanes with the objective of identifying which reactive groups can be used for further functionalization without compromising the efficiency of rotaxane synthesis. Nine ß-CD derivatives featuring an electrophilic leaving group (tosylate), aliphatic amines, a carboxylic acid, aliphatic azides, anilines, and aryl isothiocyanate were evaluated in the synthesis of hetero[4]rotaxanes. Experimental measurements on the kinetics of rotaxane synthesis were combined with detailed computational studies using the density functional theory to elucidate the mechanistic pathways and rate determining step in the cooperative capture process. Computational studies on the structure and bonding also revealed why intermolecular interactions between the ß-CD and CB[6] macrocycles improve the rate and efficiency of rotaxane formation through cooperative capture. Understanding the mechanistic details and synthetic scope will facilitate broader access to functionalized hetero[4]rotaxanes for applications in biomedicine and beyond.

7.
Commun Chem ; 6(1): 107, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264077

RESUMEN

Dual-modality imaging agents featuring both a radioactive complex for positron emission tomography (PET) and a fluorophore for optical fluorescence imaging (OFI) are crucial tools for reinforcing clinical diagnosis and intraoperative surgeries. We report the synthesis and characterisation of bimodal mechanically interlocked rotaxane-based imaging agents, constructed via the cucurbit[6]uril CB[6]-mediated alkyne-azide 'click' reaction. Two synthetic routes involving four- or six-component reactions are developed to access asymmetric rotaxanes. Furthermore, by using this rapid and versatile approach, a peptide-based rotaxane targeted toward the clinical prostate cancer biomarker, prostate-specific membrane antigen (PSMA), and bearing a 68Ga-radiometal ion complex for positron emission tomography and fluorescein as an optically active imaging agent, was synthesised. The chemical and radiochemical stability, and the cellular uptake profile of the radiolabelled and fluorescent rotaxane was evaluated in vitro where the experimental data demonstrate the viability of using an asymmetric rotaxane platform to produce dual-modality imaging agents that specifically target prostate cancer cells.

8.
Front Vet Sci ; 10: 1091842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138917

RESUMEN

Introduction: Near-infrared (NIR) fluorescence-guided surgery is increasingly utilized in humans and pets. As clinical imaging systems are optimized for Indocyanine green (ICG) detection, the usage of targeted dyes necessitates the validation of these systems for each dye. We investigated the impact of skin pigmentation and tissue overlay on the sensitivity of two NIR cameras (IC-FlowTM, VisionsenseTM VS3 Iridum) for the detection of non-targeted (ICG, IRDye800) and targeted (AngiostampTM, FAP-Cyan) NIR fluorophores in an ex vivo big animal model. Methods: We quantitatively measured the limit of detection (LOD) and signal-to-background ratio (SBR) and implemented a semi-quantitative visual score to account for subjective interpretation of images by the surgeon. Results: VisionsenseTM VS3 Iridum outperformed IC-FlowTM in terms of LOD and SBR for the detection of all dyes except FAP-Cyan. Median SBR was negatively affected by skin pigmentation and tissue overlay with both camera systems. Level of agreement between quantitative and semi-quantitative visual score and interobserver agreement were better with VisionsenseTM VS3 Iridum. Conclusion: The overlay of different tissue types and skin pigmentation may negatively affect the ability of the two tested camera systems to identify nanomolar concentrations of targeted-fluorescent dyes and should be considered when planning surgical applications.

9.
Chem Sci ; 13(43): 12713-12725, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36519052

RESUMEN

Radiolabelled monoclonal antibodies (mAbs) are a cornerstone of molecular diagnostic imaging and targeted radioimmunotherapy in nuclear medicine, but one of the major challenges in the field is to identify ways of reducing the radiation burden to patients. We reasoned that a rotaxane-based platform featuring a non-covalent mechanical bond between the radionuclide complex and the biologically active mAb could offer new ways of controlling the biophysical properties of cancer-specific radiotracers for positron emission tomography (PET). Herein, we present the photoradiosynthesis and characterisation of [89Zr]ZrFe-[4]rotaxane-azepin-onartuzumab ([89Zr]ZrFe-2), a unique rotaxane-antibody conjugate for PET imaging and quantification of the human hepatocyte growth factor receptor (c-MET). Multiple component self-assembly reactions were combined with simultaneous 89Zr-radiolabelling and light-induced bioconjugation methods to give [89Zr]ZrFe-2 in 15 ± 1% (n = 3) decay-corrected radiochemical yield, with >90% radiochemical purity, and molar activities suitable for PET imaging studies (>6.1 MBq mg-1 of protein). Cellular assays confirmed the specificity of [89Zr]ZrFe-2 binding to the c-MET receptor. Temporal PET imaging in athymic nude mice bearing subcutaneous MKN-45 gastric adenocarcinoma xenografts demonstrated specific binding of [89Zr]ZrFe-2 toward c-MET in vivo, where tumour uptake reached 9.8 ± 1.3 %ID g-1 (72 h, n = 5) in a normal group and was reduced by ∼56% in a control (blocking) group. Head-to-head comparison of the biodistribution and excretion profile of [89Zr]ZrFe-2versus two control compounds, alongside characterisation of two potential metabolites, showed that the rotaxane-radiotracer has an improved clearance profile with higher tumour-to-tissue contrast ratios and reduced radiation exposure to critical (dose-limiting) organs including liver, spleen, and kidneys. Collectively, the experimental results suggested that non-covalent mechanical bonds between the radionuclide and mAb can be used to fine-tune the pharmacokinetic profile of supramolecular radiopharmaceuticals in ways that are simply not accessible when using traditional covalent design.

10.
Inorg Chem Front ; 9(12): 3071-3081, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35770072

RESUMEN

Herein, we report the synthesis of three new bifunctional heptadentate metal ion binding chelates derived from desferrioxamine B (DFO) linked to a tripeptide unit that comprises of a glutamic acid and two glycine residues. The three DFO derivatives were also functionalised with a photoactivatable aryl azide unit for light-triggered labelling of proteins. The chelates were obtained in 3 synthetic steps in good overall yields by using solid phase peptide synthesis (SPPS). Density Functional Theory (DFT) calculations were used to estimate thermodynamic formation constants (log ß) of the corresponding Zr4+ complexes. Quantitative zirconium-89 radiolabelling (>95%) was obtained in <5 min at room temperature, and the stability of the radioconjugates toward different competitors (human serum, EDTA and Fe3+) was assessed in vitro. One-pot 89Zr-photoradiosynthesis produced [89Zr]Zr-2-onartuzumab directly from the formulated, clinical-grade sample MetMAb™, without pre-purifying the monoclonal antibody (mAb) component, with an isolated decay-corrected radiochemical yield of 36.4 ± 2.4%. PET imaging and biodistribution studies were performed in female athymic nude mice bearing subcutaneous xenografts derived from the MKN-45 human gastric cancer cell line to assess the pharmacokinetic profile and tumour binding of [89Zr]Zr-2-onartuzumab. Specific tumour uptake of [89Zr]Zr-2-onartuzumab was confirmed by using competitive inhibition (blocking) studies and bone uptake was significantly reduced compared to the parent DFO analogue.

11.
Angew Chem Int Ed Engl ; 61(29): e202204072, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35532102

RESUMEN

Mechanically interlocked molecules present opportunities to construct therapeutic drugs and diagnostic imaging agents but harnessing supramolecular chemistry to make biologically active probes in water is a challenge. Here, we describe a rotaxane-based approach to synthesise radiolabelled proteins and peptides for molecular imaging of cancer biomarkers in vivo. Host-guest chemistry using ß-cyclodextrin- and cucurbit[6]uril-catalysed cooperative capture synthesis produced gallium-68 or zirconium-89 radiolabelled metallo[4]rotaxanes. Photochemical conjugation to trastuzumab led to a viable positron emission tomography (PET) radiotracer. The rotaxane architecture can be tuned to accommodate different radiometal ion complexes, other protein- or peptide-based drugs, and fluorophores for optical detection. This technology provides a platform to explore how mechanical bonding can improve drug delivery, enhance tumour specificity, control radiotracer pharmacokinetics, and reduce dosimetry.


Asunto(s)
Neoplasias , Rotaxanos , Biomarcadores de Tumor , Diagnóstico por Imagen , Neoplasias/diagnóstico por imagen , Rotaxanos/química
12.
Mol Pharm ; 19(10): 3576-3585, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35434995

RESUMEN

Designed ankyrin repeat proteins (DARPins) are genetically engineered proteins that exhibit high specificity and affinity toward specific targets. Here, the G3-DARPin, which binds the HER2/neu receptor, was site-specifically modified with enzymatic methods and 89Zr-radiolabeled for applications in positron emission tomography (PET). Sortase A transpeptidation was used to install a desferrioxamine B (DFO) chelate bearing a reactive triglycine group to the C-terminal sortase tag of the G3-DARPin, and 89Zr-radiolabeling produced a novel 89ZrDFO-G3-DARPin radiotracer that can detect HER2/neu-positive tumors. The triglycine probe, DFO-Gly3 (1), was synthesized in 29% overall yield. After sortase A transpeptidation and purification from the nonfunctionalized protein component, the DFO-G3-DARPin product was radiolabeled to give 89ZrDFO-G3-DARPin. Binding specificity was assessed in HER2/neu-expressing BT-474 and SK-OV-3 cellular assays. The pharmacokinetics, tumor uptake, and specificity of 89ZrDFO-G3-DARPin were measured in vivo by PET imaging and confirmed by final time point (24 h) biodistribution experiments in female athymic nude mice bearing BT-474 xenografts. Sortase A transpeptidation afforded the site-specific and stoichiometrically precise functionalization of DFO-G3-DARPin with one chelate per protein. The modified DFO-G3-DARPin was purified from the nonfunctionalized DARPin by using Ni-NTA affinity chromatography. 89ZrDFO-G3-DARPin was obtained with a radiochemical purity of >95% measured by radio-size-exclusion chromatography. BT-474 tumor uptake at 24 h postadministration reached 4.41 ± 0.67 %ID/g (n = 3) with an approximate ∼70% reduction in tumor-associated activity in the blocking group (1.26 ± 0.29 %ID/g; 24 h postadministration, n = 5, P-value of <0.001). Overall, the site-specific, enzyme-mediated functionalization and characterization of 89ZrDFO-G3-DARPin in HER2/neu positive BT-474 xenografts demonstrate that DARPins are an attractive platform for generating a new class of protein-based radiotracers for PET. The specific uptake and retention of 89ZrDFO-G3-DARPin in tumors and clearance from most background tissues produced PET images with high tumor-to-background contrast.


Asunto(s)
Proteínas de Repetición de Anquirina Diseñadas , Receptor ErbB-2 , Animales , Línea Celular Tumoral , Deferoxamina/química , Femenino , Humanos , Ratones , Ratones Desnudos , Tomografía de Emisión de Positrones/métodos , Receptor ErbB-2/metabolismo , Distribución Tisular , Circonio/química
13.
JACS Au ; 2(3): 646-664, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35373206

RESUMEN

The creation of discrete, covalent bonds between a protein and a functional molecule like a drug, fluorophore, or radiolabeled complex is essential for making state-of-the-art tools that find applications in basic science and clinical medicine. Photochemistry offers a unique set of reactive groups that hold potential for the synthesis of protein conjugates. Previous studies have demonstrated that photoactivatable desferrioxamine B (DFO) derivatives featuring a para-substituted aryl azide (ArN3) can be used to produce viable zirconium-89-radiolabeled monoclonal antibodies (89Zr-mAbs) for applications in noninvasive diagnostic positron emission tomography (PET) imaging of cancers. Here, we report on the synthesis, 89Zr-radiochemistry, and light-triggered photoradiosynthesis of 89Zr-labeled human serum albumin (HSA) using a series of 14 different photoactivatable DFO derivatives. The photoactive groups explore a range of substituted, and isomeric ArN3 reagents, as well as derivatives of benzophenone, a para-substituted trifluoromethyl phenyl diazirine, and a tetrazole species. For the compounds studied, efficient photochemical activation occurs inside the UVA-to-visible region of the electromagnetic spectrum (∼365-450 nm) and the photochemical reactions with HSA in water were complete within 15 min under ambient conditions. Under standardized experimental conditions, photoradiosynthesis with compounds 1-14 produced the corresponding 89ZrDFO-PEG3-HSA conjugates with decay-corrected isolated radiochemical yields between 18.1 ± 1.8% and 62.3 ± 3.6%. Extensive density functional theory (DFT) calculations were used to explore the reaction mechanisms and chemoselectivity of the light-induced bimolecular conjugation of compounds 1-14 to protein. The photoactivatable DFO-derivatives operate by at least five distinct mechanisms, each producing a different type of bioconjugate bond. Overall, the experimental and computational work presented here confirms that photochemistry is a viable option for making diverse, functionalized protein conjugates.

14.
Dalton Trans ; 51(13): 5041-5052, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35285835

RESUMEN

In recent years, copper-64 and copper-67 have been considered as a useful theranostic pair in nuclear medicine, due to their favourable and complementary decay properties. As 67Cu and 64Cu are chemically identical, development of both existing and new bifunctional chelators for 64Cu imaging agents can be readily adapted for the 67Cu-radionuclide. In this study, we explored the use of photoactivatable copper chelators based on the asymmetric bis(thiosemicarbazone) scaffold, H2ATSM/en, for the photoradiolabelling of protein. Photoactivatable 64CuATSM-derivatives were prepared by both direct synthesis and transmetallation from the corresponding natZn complex. Then, irradiation with UV light in the presence of a protein of interest in a pH buffered aqueous solution afforded the 64Cu-labelled protein conjugates in decay-corrected radiochemical yield of 86.9 ± 1.0% via the transmetallation method and 35.3 ± 1.7% from the direct radiolabelling method. This study successfully demonstrates the viability of photochemically induced conjugation methods for the development of copper-based radiotracers for potential applications in diagnostic positron emission tomography (PET) imaging and targeted radionuclide therapy.


Asunto(s)
Radioisótopos de Cobre , Tiosemicarbazonas , Quelantes/química , Radioisótopos de Cobre/química , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Tiosemicarbazonas/química
15.
Sci Rep ; 12(1): 668, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027637

RESUMEN

Clinical production of 89Zr-radiolabeled antibodies (89Zr-mAbs) for positron emission tomography imaging relies on the pre-conjugation of desferrioxamine B (DFO) to the purified protein, followed by isolation and characterization of the functionalized intermediate, and then manual radiosynthesis. Although highly successful, this route exposes radiochemists to a potentially large radiation dose and entails several technological and economic hurdles that limit access of 89Zr-mAbs to just a specialist few Nuclear Medicine facilities worldwide. Here, we introduce a fully automated synthesis box that can produce individual doses of 89Zr-mAbs formulated in sterile solution in < 25 min starting from [89Zr(C2O4)4]4- (89Zr-oxalate), our good laboratory practice-compliant photoactivatable desferrioxamine-based chelate (DFO-PEG3-ArN3), and clinical-grade antibodies without the need for pre-purification of protein. The automated steps include neutralization of the 89Zr-oxalate stock, chelate radiolabeling, and light-induced protein conjugation, followed by 89Zr-mAb purification, formulation, and sterile filtration. As proof-of-principle, 89ZrDFO-PEG3-azepin-trastuzumab was synthesized directly from Herceptin in < 25 min with an overall decay-corrected radiochemical yield of 20.1 ± 2.4% (n = 3), a radiochemical purity > 99%, and chemical purity > 99%. The synthesis unit can also produce 89Zr-mAbs via the conventional radiolabeling routes from pre-functionalized DFO-mAbs that are currently used in the clinic. This automated method will improve access to state-of-the-art 89Zr-mAbs at the many Nuclear Medicine and research institutions that require automated devices for radiotracer production.

16.
J Med Chem ; 65(1): 811-823, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34981931

RESUMEN

Fluorescent protein conjugates are vital tools in a wide range of scientific disciplines from basic biochemical research to applications in clinical pathology and intraoperative surgery. We report the synthesis and characterization of photoactivatable fluorophores (PhotoTags) based on the functionalization of coumarin, fluorescein, BODIPY, rhodamine B, and cyanine dyes with a photochemically active aryl azide group. Photochemical labeling experiments using human serum albumin produced fluorescent proteins in high yields under irradiation with ultraviolet light for <15 min. We also synthesized DFO-RhodB-PEG3-ArN3─a photoactivatable compound that can be radiolabeled with 89Zr for applications in optical imaging and positron emission tomography. One-pot 89Zr-radiolabeling and light-induced protein conjugation produced [89Zr]ZrDFO-RhodB-PEG3-azepin-trastuzumab. Proof-of-concept studies in vitro and in vivo confirmed that [89Zr]ZrDFO-RhodB-PEG3-azepin-trastuzumab is a potential dual-modality agent for detecting human epidermal growth factor receptor 2 (HER2/neu) expression. Overall, the PhotoTag technology represents a rapid, synthetically versatile, and user-friendly approach for generating novel protein conjugates.


Asunto(s)
Colorantes Fluorescentes/síntesis química , Tomografía de Emisión de Positrones/métodos , Animales , Azidas/química , Femenino , Colorantes Fluorescentes/farmacocinética , Humanos , Luz , Ratones , Ratones Desnudos , Procesos Fotoquímicos , Radioisótopos , Receptor ErbB-2/efectos de los fármacos , Albúmina Sérica , Distribución Tisular , Trastuzumab/química , Rayos Ultravioleta , Circonio
17.
Carbohydr Res ; 508: 108399, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34298358

RESUMEN

Despite the broad occurrence of carbohydrate-protein interactions in biology, the low binding affinities of such interactions hamper the characterization of carbohydrate binding sites in the absence of three-dimensional structural models. To allow the identification of proteins interacting with specific carbohydrate epitopes, we have developed new photoactivable oligosaccharide probes. Oligosaccharides containing the 1,2-cyclic carbamate group were attached to building blocks with a primary amino group to yield the corresponding urea derivatives. Cyclic carbamates of lactose, and 3- and 2'-fucosyl lactose, were used for the conjugation with building blocks containing photoactivable diazirine, benzophenone or aryl azido groups. The resulting oligosaccharide derivatives were tested for binding to Erythrina cristagalli lectin (ECL), Aleuria aurantia lectin (AAL) and Ulex europaeus agglutinin-I (UEA I). We found that ligands containing an aryl azido photoactivable group were successfully attached to lectins. The photoactivation reaction preserved lectin integrity, as no sign of protein degradation was visible. Mass spectrometric analysis confirmed the covalent binding of between one to three oligosaccharide probes, which matched with the expected carbohydrate-binding properties of the lectins tested. The conjugation of cyclic carbamate-derivatized oligosaccharides with photoactivable aryl azido groups thus represents a convenient approach to study protein-carbohydrate interactions.


Asunto(s)
Carbamatos , Lectinas de Plantas
18.
Bioconjug Chem ; 32(7): 1263-1275, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34056896

RESUMEN

Most experimental work in the space of bioconjugation chemistry focuses on using new methods to construct covalent bonds between a cargo molecule and a protein of interest such as a monoclonal antibody (mAb). Bond formation is important for generating new diagnostic tools, yet when these compounds advance to preclinical in vitro and in vivo studies, and later for translation to the clinic, understanding the fate of potential metabolites that arise from chemical or enzymatic degradation of the construct is important to obtain a full picture of the pharmacokinetic performance of a new compound. In the context of designing new bioconjugate methods for labeling antibodies with the positron-emitting radionuclide 89Zr, we previously developed a photochemical process for making 89Zr-mAbs. Experimental studies on [89Zr]ZrDFO-PEG3-azepin-mAb constructs revealed that incorporation of the tris-polyethylene glycol (PEG3) linker improved the aqueous phase solubility and radiochemical conversion. However, the use of a PEG3 linker also has an impact on the whole-body residence time of the construct, leading to a more rapid excretion of the 89Zr activity when compared with radiotracers that lack the PEG3 chain. In this work, we investigated the metabolic fate of eight possible metabolites that arise from the logical disconnection of [89Zr]ZrDFO-PEG3-azepin-mAb at bonds which are susceptible to chemical or enzymatic cleavage. Synthesis combined with 89Zr-radiolabeling, small-animal positron emission tomography imaging at multiple time points from 0 to 20 h, and measurements of the effective half-life for whole-body excretion are reported. The conclusions are that the use of a PEG3 linker is non-innocent in terms of its impact on enhancing the metabolism of [89Zr]ZrDFO-PEG3-azepin-mAbs. In most cases, degradation can produce metabolites that are rapidly eliminated from the body, thereby enhancing image contrast by reducing nonspecific accumulation and retention of 89Zr in background organs such as the liver, spleen, kidney, and bone.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Inmunoconjugados/metabolismo , Polietilenglicoles/química , Radioisótopos/química , Circonio/química , Animales , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Deferoxamina/química , Inmunoconjugados/farmacocinética , Ratones , Ratones Desnudos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Distribución Tisular
19.
J Med Chem ; 64(8): 4960-4971, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33826320

RESUMEN

In recent years, radiolabeled tracers targeting prostate-specific membrane antigen (PSMA) have had a tremendous impact on prostate cancer management. Here, we report on the formation of radioactive impurities formed during the clinical production of 177Lu-labeled PSMA-617. We provide compelling evidence that these impurities are the result of a spontaneous, thermally mediated condensation reaction of the Glu-CO-Lys moiety resulting in the formation of three different five-membered ring systems. Density functional theory (DFT) calculations show that the condensation and cyclization of the Glu-CO-Lys moiety is thermodynamically spontaneous. In cell experiments, no affinity of these cyclized compounds toward PSMA was observed. HPLC analyses of urine samples from patient studies showed rapid renal excretion of these radioactive cyclized species. Radiolabeling conditions were identified that significantly reduced the formation of cyclized side products yielding 177Lu-labeled PSMA-617 in high radiochemical yield and purity in concordance with current good manufacturing practice (cGMP) requirements.


Asunto(s)
Dipéptidos/química , Compuestos Heterocíclicos con 1 Anillo/química , Radiofármacos/síntesis química , Secuencias de Aminoácidos , Línea Celular , Cromatografía Líquida de Alta Presión , Ciclización , Teoría Funcional de la Densidad , Dipéptidos/metabolismo , Dipéptidos/orina , Compuestos Heterocíclicos con 1 Anillo/metabolismo , Compuestos Heterocíclicos con 1 Anillo/orina , Humanos , Lutecio/química , Espectroscopía de Resonancia Magnética , Antígeno Prostático Específico , Radioisótopos/química , Radiofármacos/metabolismo , Radiofármacos/orina , Espectrometría de Masa por Ionización de Electrospray , Termodinámica
20.
Molecules ; 26(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540712

RESUMEN

89Zr-radiolabelled proteins functionalised with desferrioxamine B are a cornerstone of diagnostic positron emission tomography. In the clinical setting, 89Zr-labelled proteins are produced manually. Here, we explore the potential of using a microfluidic photochemical flow reactor to prepare 89Zr-radiolabelled proteins. The light-induced functionalisation and 89Zr-radiolabelling of human serum albumin ([89Zr]ZrDFO-PEG3-Et-azepin-HSA) was achieved by flow photochemistry with a decay-corrected radiochemical yield (RCY) of 31.2 ± 1.3% (n = 3) and radiochemical purity >90%. In comparison, a manual batch photoreactor synthesis produced the same radiotracer in a decay-corrected RCY of 59.6 ± 3.6% (n = 3) with an equivalent RCP > 90%. The results indicate that photoradiolabelling in flow is a feasible platform for the automated production of protein-based 89Zr-radiotracers, but further refinement of the apparatus and optimisation of the method are required before the flow process is competitive with manual reactions.


Asunto(s)
Dispositivos Laboratorio en un Chip , Radioquímica/instrumentación , Radioisótopos/química , Albúmina Sérica Humana/química , Circonio/química , Humanos , Marcaje Isotópico , Fotoquímica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...