Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(15): 17163-17173, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38645351

RESUMEN

Glycolipids such as sugar alcohol esters have been demonstrated to be relevant for numerous applications across various domains of specialty. The use of organic solvents and, more recently, deep eutectic solvents (DESs) to mediate lipase-supported bioconversions is gaining potential for industrial application. However, many challenges and limitations remain such as extensive time of production and relatively low productivities among others, which must be solved to strengthen such a biocatalytic process in industry. In this context, this study focuses on the intensification of sorbityl laurate production, as a model biocatalyzed reaction using Novozym 435, investigating the relevance of temperature, heating method, and solvent system. By increasing the reaction temperature from 50 to 90 °C, the space-time yield and product yield were considerably enhanced for reactions in DES and the organic solvent 2M2B, irrespective of the heating method (conventional or microwave heating). However, positive effects in 2M2B were more pronounced with conventional heating as 98% conversion yield was reached within 90 min at 90 °C, equating thus to a nearly 4-fold increase in performance yielding 118.0 ± 3.6 g/(L·h) productivity. With DES, the overall yield and space-time yield were lower with both heating methods. However, microwave heating enabled a 2-fold increase in both performance parameters when the reaction temperature was increased from 50 to 90 °C. Compared to conventional heating, a 7-fold increase in space-time yield at 50 °C and a 16-fold increase at 90 °C were achieved in DES by microwave heating. Furthermore, microwave irradiation enabled the usage of a neat, solvent-free system, representing an initial proof of concept with productivities of up to 13.3 ± 2.3 g/(L·h).

2.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36233331

RESUMEN

Glycolipids can be synthetized in deep eutectic solvents (DESs) as they possess low water content allowing a reversed lipase activity and thus enables ester formation. Based on this principle, honey can also serve as a media for glycolipid synthesis. Indeed, this supersaturated sugar solution is comparable in terms of physicochemical properties to the sugar-based DESs. Honey-based products being commercially available for therapeutic applications, it appears interesting to enhance its bioactivity. In the current work, we investigate if enriching medical grade honey with in situ enzymatically-synthetized glycolipids can improve the antimicrobial property of the mixture. The tested mixtures are composed of Manuka honey that is enriched with octanoate, decanoate, laurate, and myristate sugar esters, respectively dubbed GOH, GDH, GLH, and GMH. To characterize the bioactivity of those mixtures, first a qualitative screening using an agar well diffusion assay has been performed with methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Candida bombicola, Escherichia coli, and Pseudomonas putida which confirmed considerably enhanced susceptibility of these micro-organisms to the different glycolipid enriched honey mixtures. Then, a designed biosensor E. coli strain that displays a stress reporter system consisting of three stress-specific inducible, red, green, and blue fluorescent proteins which respectively translate to physiological stress, genotoxicity, and cytotoxicity was used. Bioactivity was, therefore, characterized, and a six-fold enhancement of the physiological stress that was caused by GOH compared to regular Manuka honey at a 1.6% (v/v) concentration was observed. An antibacterial agar well diffusion assay with E. coli was performed as well and demonstrated an improved inhibitory potential with GOH upon 20% (v/v) concentration.


Asunto(s)
Antiinfecciosos , Miel , Staphylococcus aureus Resistente a Meticilina , Agar , Antibacterianos/análisis , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Caprilatos , Decanoatos , Escherichia coli , Ésteres , Glucolípidos/farmacología , Lauratos , Lipasa , Pruebas de Sensibilidad Microbiana , Miristatos , Azúcares , Agua
3.
ACS Sustain Chem Eng ; 10(31): 10192-10202, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35966390

RESUMEN

Mechanochemical and biocatalytic approaches in modern research are two major assets to develop greener processes. In the present study, these modular tools of sustainability are pointed toward the production of versatile and daily employed compounds such as surfactants. Toward this aim, glycolipids, a class of nonionic surfactants composed of ubiquitous and primary metabolites such as sugar and fatty acid moieties, represent a promising alternative to petroleum-derived surface-active agents. Therefore, the combination of biocatalysis with mechanochemistry aiming at glycolipid synthesis seemed a logical step that was taken in this study for the first time. The monoacylated model compound glucose-6-O-decanoate was synthesized with the help of a bead mill apparatus using two different unconventional dissolved reaction systems, namely, menthol-based hydrophobic deep eutectic solvents and 2-methyl-2-butanol, thus reaching up to 12% yield in the latter based on the conversion of vinyl decanoate, after only 90 min of reaction. In addition, a neat reaction system using an excess of vinylated fatty ester as an adjuvant allowed a 27 mM/h space-time yield. The overall significant increase in productivities, up to 6 times, compared to standard heating and shaking methods, shows the tremendous potential of mechanoenzymatic synthesis.

4.
Adv Biochem Eng Biotechnol ; 181: 53-72, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34518911

RESUMEN

Glycolipids are biodegradable, non-toxic surfactants with a wide range of applications. Enzymatic esterification or transesterification facilitated in reaction media of low water activity is a reaction strategy for the production of tailor-made glycolipids as a high structural diversity can be achieved. Organic solvents, ionic liquids, and deep eutectic solvents have been applied as reaction media. However, several challenges need to be addressed for efficient (trans-)esterification reactions, especially for the lipophilization of polar substrates. Therefore, crucial parameters in (trans-)esterification reactions in conventional and non-conventional media are discussed and compared in this review with a special focus on glycolipid synthesis.


Asunto(s)
Glucolípidos , Lipasa , Catálisis , Esterificación , Lipasa/metabolismo , Solventes/química
5.
PLoS One ; 16(7): e0248324, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34319978

RESUMEN

Wearing a facial mask can limit COVID-19 transmission. Measurements of communities' mask use behavior have mostly relied on self-report. This study's objective was to devise a method to measure the prevalence of improper mask use and no mask use in indoor public areas without relying on self-report. A stratified random sample of retail trade stores (public areas) in Louisville, Kentucky, USA, was selected and targeted for observation by trained surveyors during December 14-20, 2020. The stratification allowed for investigating mask use behavior by city district, retail trade group, and public area size. The total number of visited public areas was 382 where mask use behavior of 2,080 visitors and 1,510 staff were observed. The average prevalence of mask use among observed visitors was 96%, while the average prevalence of proper use was 86%. In 48% of the public areas, at least one improperly masked visitor was observed and in 17% at least one unmasked visitor was observed. The average prevalence of proper mask use among staff was 87%, similar to the average among visitors. However, the percentage of public areas where at least one improperly masked staff was observed was 33. Significant disparities in mask use and its proper use were observed among both visitors and staff by public area size, retail trade type, and geographical area. Observing unmasked and improperly masked visitors was more common in small (less than 1500 square feet) public areas than larger ones, specifically in food and grocery stores as compared to other retail stores. Also, the majority of the observed unmasked persons were male and middle-aged.


Asunto(s)
COVID-19/prevención & control , Máscaras/estadística & datos numéricos , COVID-19/epidemiología , COVID-19/transmisión , Transmisión de Enfermedad Infecciosa/prevención & control , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Humanos , Kentucky/epidemiología , Pandemias , Prevalencia , Instalaciones Públicas , Salud Pública/métodos , SARS-CoV-2/aislamiento & purificación
6.
RSC Adv ; 11(54): 34235-34244, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35497276

RESUMEN

Glycolipids are biosurfactants with a wide range of structural diversity. They are biodegradable, based on renewables, ecocompatible and exhibit high surface activity. Still, studies comparing glycolipids and conventional surfactants in terms of interfacial properties and foaming performance are lacking. Here, we compared interfacial and foaming properties of microbial and enzymatically synthesized glycolipids to those of the widely-used, conventional surfactant sodium dodecyl sulfate (SDS). The enzymatically produced sorbose monodecanoate, as well as microbially produced di-rhamno-di-lipids exhibited high foam stabilizing properties, similar to those of SDS. However, sophorolipid and mono-rhamno-di-lipids did not produce metastable foams. An appropriate selection of head and tail groups depending on the application of interest is therefore necessary. Then, glycolipids can serve as an ecofriendly and efficient alternative to petroleum-based surfactants, even at substantially lower concentrations than e.g. SDS. Moreover, the influence of three foaming gases on the foaming properties of the glycolipids was evaluated. Slightly higher foam stability and lower coarsening rates were determined for sorbose monodecanoate when using nitrogen as the foaming gas instead of air. Foams generated with carbon dioxide were not metastable, no matter which surfactant was used.

7.
Molecules ; 25(17)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825508

RESUMEN

Glycolipids are a class of biodegradable surfactants less harmful to the environment than petrochemically derived surfactants. Here we discuss interfacial properties, foam stability, characterized in terms of transient foam height, gas volume fraction and bubble diameter as well as texture of seven enzymatically synthesized surfactants for the first time. Glycolipids consisting of different head groups, namely glucose, sorbitol, glucuronic acid and sorbose, combined with different C10 acyl chains, namely decanoate, dec-9-enoate and 4-methyl-nonanoate are compared. Equilibrium interfacial tension values vary between 24.3 and 29.6 mN/m, critical micelle concentration varies between 0.7 and 3.0 mM. In both cases highest values were found for the surfactants with unsaturated or branched tail groups. Interfacial elasticity and viscosity, however, were significantly reduced in these cases. Head and tail group both affect foam stability. Foams from glycolipids with sorbose and glucuronic acid derived head groups showed higher stability than those from surfactants with glucose head group, sorbitol provided lowest foam stability. We attribute this to different head group hydration also showing up in the time to reach equilibrium interfacial adsorption. Unsaturated tail groups reduced whereas branching enhanced foam stability compared to the systems with linear, saturated tail. Moreover, the tail group strongly influences foam texture. Glycolipids with unsaturated tail groups produced foams quickly collapsing even at smallest shear loads, whereas the branched tail group yielded a higher modulus than the linear tails. Normalized shear moduli for the systems with different head groups varied in a narrow range, with the highest value found for decylglucuronate.


Asunto(s)
Glucolípidos/química , Micelas , Tensoactivos/química , Interacciones Hidrofóbicas e Hidrofílicas , Viscosidad , Agua/química
8.
Int J Mol Sci ; 21(12)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570792

RESUMEN

Environmentally friendly and biodegradable reaction media are an important part of a sustainable glycolipid production in the transition to green chemistry. Deep eutectic solvents (DESs) are an ecofriendly alternative to organic solvents. So far, only hydrophilic DESs were considered for enzymatic glycolipid synthesis. In this study, a hydrophobic DES consisting of (-)-menthol and decanoic acid is presented for the first time as an alternative to hydrophilic DES. The yields in the newly introduced hydrophobic DES are significantly higher than in hydrophilic DESs. Different reaction parameters were investigated to optimize the synthesis further. Twenty milligrams per milliliter iCalB and 0.5 M glucose resulted in the highest initial reaction velocity for the esterification reaction, while the highest initial reaction velocity was achieved with 1.5 M glucose in the transesterification reaction. The enzyme was proven to be reusable for at least five cycles without significant loss of activity.


Asunto(s)
Decanoatos/química , Proteínas Fúngicas/metabolismo , Glucosa/química , Lipasa/metabolismo , Basidiomycota/enzimología , Esterificación , Tecnología Química Verde , Interacciones Hidrofóbicas e Hidrofílicas , Solventes/química
9.
Artículo en Inglés | MEDLINE | ID: mdl-32432093

RESUMEN

Glycolipids are considered an alternative to petrochemically based surfactants because they are non-toxic, biodegradable, and less harmful to the environment while having comparable surface-active properties. They can be produced chemically or enzymatically in organic solvents or in deep eutectic solvents (DES) from renewable resources. DES are non-flammable, non-volatile, biodegradable, and almost non-toxic. Unlike organic solvents, sugars are easily soluble in hydrophilic DES. However, DES are highly viscous systems and restricted mass transfer is likely to be a major limiting factor for their application. Limiting factors for glycolipid synthesis in DES are not generally well understood. Therefore, the influence of external mass transfer, fatty acid concentration, and distribution on initial reaction velocity in two hydrophilic DES (choline:urea and choline:glucose) was investigated. At agitation speeds of and higher than 60 rpm, the viscosity of both DES did not limit external mass transfer. Fatty acid concentration of 0.5 M resulted in highest initial reaction velocity while higher concentrations had negative effects. Fatty acid accessibility was identified as a limiting factor for glycolipid synthesis in hydrophilic DES. Mean droplet sizes of fatty acid-DES emulsions can be significantly decreased by ultrasonic pretreatment resulting in significantly increased initial reaction velocity and yield (from 0.15 ± 0.03 µmol glucose monodecanoate/g DES to 0.57 ± 0.03 µmol/g) in the choline: urea DES. The study clearly indicates that fatty acid accessibility is a limiting factor in enzymatic glycolipid synthesis in DES. Furthermore, it was shown that physical pretreatment of fatty acid-DES emulsions is mandatory to improve the availability of fatty acids.

10.
Artículo en Inglés | MEDLINE | ID: mdl-32391350

RESUMEN

Single cell oil (SCO) produced by oleaginous yeasts is considered as a sustainable source for biodiesel and oleochemicals since its production does not compete with food or feed and high yields can be obtained from a wide variety of carbon sources, e.g., acetate or lignocellulose. Downstream processing is still costly preventing the broader application of SCO. Direct transesterification of freeze-dried biomass is widely used for analytical purposes and for biodiesel production but it is energy intensive and, therefore, expensive. Additionally, only fatty acid esters are produced limiting the subsequent applications. The harsh conditions applied during direct esterification might also damage high-value polyunsaturated fatty acids. Unfortunately, universal downstream strategies effective for all yeast species do not exist and methods have to be developed for each yeast species due to differences in cell wall composition. Therefore, the aim of this study was to evaluate three industrially relevant cell disruption methods combined with three extraction systems for the SCO extraction of two novel, unconventional oleaginous yeasts, Saitozyma podzolica DSM 27192 and Apiotrichum porosum DSM 27194, based on cell disruption efficiency, lipid yield, and oil quality. Bead milling (BM) and high pressure homogenization (HPH) were effective cell disruption methods in contrast to sonification. By combining HPH (95% cell disruption efficiency) with ethanol-hexane-extraction 46.9 ± 4.4% lipid/CDW of S. podzolica were obtained which was 2.7 times higher than with the least suitable combination (ultrasound + Folch). A. porosum was less affected by cell disruption attempts. Here, the highest disruption efficiency was 74% after BM and the most efficient lipid recovery method was direct acidic transesterification (27.2 ± 0.5% fatty acid methyl esters/CDW) after freeze drying. The study clearly indicates cell disruption is the decisive step for SCO extraction. At disruption efficiencies of >90%, lipids can be extracted at high yields, whereas at lower cell disruption efficiencies, considerable amounts of lipids will not be accessible for extraction regardless of the solvents used. Furthermore, it was shown that hexane-ethanol which is commonly used for extraction of algal lipids is also highly efficient for yeasts.

11.
Food Res Int ; 118: 40-48, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30898351

RESUMEN

With regard to its cost-effective cultivation and the composition of high-value nutrients, the diatom Phaeodactylum tricornutum (P. tricornutum) attracts interest for the use in human nutrition. Besides a number of important nutrients, it is rich in carotenoids. Therefore, this study aimed to investigate the potential of P. tricornutum as a carotenoid source for human nutrition. In photoautotrophically produced P. tricornutum biomass the carotenoid constitution, bioaccessibility (in vitro digestion model) and cellular uptake in differentiated Caco-2 cells (Transwell model system) was determined. Furthermore, the influence of sonication on these parameters was investigated. The results indicate that ß-carotene, zeaxanthin and fucoxanthin were the main carotenoids found in P. tricornutum. Moreover, these carotenoids showed a good bioaccessibility (ß-carotene: 25%, zeaxanthin: 27%, fucoxanthin: 57%), which is further improved by sonication for ß-carotene and fucoxanthin. In line with the good bioaccessibility, fucoxanthin was the most abundant carotenoid in Caco-2 cells followed by zeaxanthin. In contrast, ß-carotene could not be detected in the cells. The present study demonstrated that P. tricornutum represents a good source of carotenoids, particularly fucoxanthin. Thus, this diatom can contribute to the intake of bioaccessible carotenoids, even without processing. In addition, sonication might be a useful tool to improve the carotenoid bioaccessibility.


Asunto(s)
Carotenoides/química , Diatomeas/química , Diatomeas/efectos de la radiación , Sonicación , Biomasa , Células CACO-2 , Digestión , Humanos , Permeabilidad , Xantófilas , Zeaxantinas , beta Caroteno
12.
J Neurovirol ; 20(2): 175-83, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23943466

RESUMEN

Recruitment of immune cells such as monocytes/macrophages and dendritic cells (DCs) across the blood-brain barrier (BBB) has been documented in diseases involving neuroinflammation. Neuroinvasion by HIV leads to neurocognitive diseases and alters the permeability of the BBB. Likewise, many HIV patients use drugs of abuse such as morphine, which can further compromise the BBB. While the role of monocytes and macrophages in neuroAIDS is well established, research demonstrating the presence and role of DCs in the CNS during HIV infection has not been developed yet. In this respect, this study explored the presence of DCs in the brain parenchyma of rhesus macaques infected with a neurovirulent form of SIV (SIV mac239 R71/17E) and administered with morphine. Cells positive for DC markers including CD11c (integrin), macDC-SIGN (dendritic cell-specific ICAM-3 grabbing nonintegrin), CD83 (a maturation factor), and HLA-DR (MHC class II) were consistently found in the brain parenchyma of SIV-infected macaques as well as infected macaques on morphine. Control animals did not exhibit any DC presence in their brains. These results provide first evidence of DCs' relevance in NeuroAIDS vis-à-vis drugs of abuse and open new avenues of understanding and investigative HIV-CNS inflictions.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Morfina/farmacología , Narcóticos/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Biomarcadores/metabolismo , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/virología , Encéfalo/inmunología , Encéfalo/patología , Encéfalo/virología , Movimiento Celular/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/patología , Células Dendríticas/virología , Expresión Génica , Macaca mulatta , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...