Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ground Water ; 61(4): 463-478, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36928631

RESUMEN

Groundwater resources are connected with social, economic, ecological, and Earth systems. We introduce the framing of groundwater-connected systems to better represent the nature and complexity of these connections in data collection, scientific investigations, governance and management approaches, and groundwater education. Groundwater-connected systems are social, economic, ecological, and Earth systems that interact with groundwater, such as irrigated agriculture, groundwater-dependent ecosystems, and cultural relationships to groundwater expressions such as springs and rivers. Groundwater-connected systems form social-ecological systems with complex behaviors such as feedbacks, nonlinear processes, multiple stable system states, and path dependency. These complex behaviors are only visible through this integrated system framing and are not endogenous properties of physical groundwater systems. The framing is syncretic as it aims to provide a common conceptual foundation for the growing disciplines of socio-hydrogeology, eco-hydrogeology, groundwater governance, and hydro-social groundwater analysis. The framing also facilitates greater alignment between the groundwater sustainability discourse and emerging sustainability concepts and principles. Aligning with these concepts and principles presents groundwater sustainability as more than a physical state to be reached; and argues that place-based and multifaceted goals, values, justice, knowledge systems, governance, and management must continually be integrated to maintain groundwater's social, ecological, and Earth system functions. The groundwater-connected systems framing can underpin a broad, methodologically pluralistic, and community-driven new wave of data collection and analysis, research, governance, management, and education. These developments, together, can invigorate efforts to foster sustainable groundwater futures in the complex systems groundwater is embedded within.


Asunto(s)
Ecosistema , Agua Subterránea , Conservación de los Recursos Naturales , Ríos , Agricultura
2.
Environ Pollut ; 287: 117596, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426387

RESUMEN

Despite Australia's high reliance on coal for electricity generation, no study has addressed the extent to which mercury (Hg) deposition has increased since the commissioning of coal-fired power plants. We present stratigraphic data from lake sediments in the Hunter Valley (New South Wales) and Latrobe Valley (Victoria), where a significant proportion of Australia's electricity is generated via coal combustion. Mercury deposition in lake sediments increased in the 1970s with the commissioning of coal-fired power plants, by a factor of 2.9-times in sediments of Lake Glenbawn (Hunter Valley) and 14-times in Traralgon Reservoir (Latrobe Valley). Sediments deposited after the commissioning of power plants have distinct Hg isotope compositions, similar to those of combusted coals. Mercury emission, estimated using an atmospheric model (CALPUFF), was higher in the Latrobe Valley than in the Hunter Valley. This is a result of higher Hg concentrations in lignite coal, lax regulation and older pollution-control technologies adopted by coal-fired power plants in the Latrobe Valley. Near-source deposition of Hg in Australia is significantly higher than North America and Europe, where better emission controls (e.g. wet flue gas desulfurization) have been in effect for decades. The challenge for Australia in years to come will be to ratify the Minamata Convention and develop better regulation policies to reduce Hg emissions.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , Ceniza del Carbón/análisis , Monitoreo del Ambiente , Mercurio/análisis , Centrales Eléctricas , Victoria
3.
Sci Total Environ ; 728: 137398, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32371267

RESUMEN

The Hunter and Latrobe Valleys have two of the richest coal deposits in Australia. They also host the largest coal-fired power stations in the country. We reconstructed metal deposition records in lake sediments in the Hunter and Latrobe Valleys to determine if metal deposition in freshwater lakes have increased in the region. The current regulatory arrangement applied to metal emissions from coal-fired power stations in Australia are presented, discussing their capacity to address future increases in metal deposition from these sources. Sediment records of spheroidal carbonaceous particles (SCPs), a component of fly-ash, were also used as an additional line of evidence to identify the contribution of industrial activities related to electricity generation to metal deposition in regions surrounding open-cut coal mines and coal-fired power stations. Sediment metal concentrations and SCP counts in the sedimentary records, from the Hunter and Latrobe Valleys, both indicated that open-cut coal mining and the subsequent combustion of coal in power stations has most likely resulted in an increase in atmospheric deposition of metals in the local region. In particular, the metalloids As and Se showed the greatest enrichment compared to before coal mining commenced. Although the introduction of bag filters at Liddell Power Station and the decommissioning of Hazelwood Power Station appear to have resulted in a decrease of metal deposition in nearby lakes, overall metal deposition in the environment is still increasing. The challenge for the years to come will be to develop better regulation policies and tools that will contribute to reduce metal emissions in these major electricity production centres in Australia.

4.
Nat Hum Behav ; 1(9): 640-649, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31024136

RESUMEN

Groundwater is critical to global food security, environmental flows, and millions of rural livelihoods in the face of climate change 1 . Although a third of Earth's largest groundwater basins are being depleted by irrigated agriculture 2 , little is known about the conditions that lead resource users to comply with conservation policies. Here we developed an agent-based model 3,4 of irrigated agriculture rooted in principles of cooperation 5,6 and collective action 7 and grounded on the World Values Survey Wave 6 (n = 90,350). Simulations of three major aquifer systems facing unsustainable demands reveal tipping points where social norms towards groundwater conservation shift abruptly with small changes in cultural values and monitoring and enforcement provisions. These tipping points are amplified by group size and best invoked by engaging a minority of rule followers. Overall, we present a powerful tool for evaluating the contingency of regulatory compliance upon cultural, socioeconomic, institutional and physical conditions, and its susceptibility to change beyond thresholds. Managing these thresholds may help to avoid unsustainable groundwater development, reduce enforcement costs, better account for cultural diversity in transboundary aquifer management and increase community resilience to changes in regional climate. Although we focus on groundwater, our methods and findings apply broadly to other resource management issues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...