Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 127(10): 2277-2285, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36882905

RESUMEN

The ability to form robust, optoelectronically responsive, and mechanically tunable hydrogels using facile processing is desirable for sensing, biomedical, and light-harvesting applications. We demonstrate that such a hydrogel can be formed using aqueous complexation between one conjugated and one nonconjugated polyelectrolyte. We show that the rheological properties of the hydrogel can be tuned using the regioregularity of the conjugated polyelectrolyte (CPE) backbone, leading to significantly different mesoscale gel morphologies. We also find that the exciton dynamics in the long-time limit reflect differences in the underlying electronic connectivity of the hydrogels as a function CPE regioregularity. The influence of excess small ions on the hydrogel structure and the exciton dynamics similarly depends on the regioregularity in a significant way. Finally, electrical impedance measurements lead us to infer that these hydrogels can act as mixed ionic/electronic conductors. We believe that such gels possess an attractive combination of physical-chemical properties that can be leveraged in multiple applications.

2.
Nanoscale Adv ; 2(3): 1074-1083, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36133054

RESUMEN

Design and engineering of graphene-based functional nanomaterials for effective antimicrobial applications has been attracting extensive interest. In the present study, graphene oxide quantum dots (GOQDs) were prepared by chemical exfoliation of carbon fibers and exhibited apparent antimicrobial activity. Transmission electron microscopic measurements showed that the lateral length ranged from a few tens to a few hundred nanometers. Upon reduction by sodium borohydride, whereas the UV-vis absorption profile remained largely unchanged, steady-state photoluminescence measurements exhibited a marked blue-shift and increase in intensity of the emission, due to (partial) removal of phenanthroline-like structural defects within the carbon skeletons. Consistent results were obtained in Raman and time-resolved photoluminescence measurements. Interestingly, the samples exhibited apparent, but clearly different, antimicrobial activity against Staphylococcus epidermidis cells. In the dark and under photoirradiation (400 nm), the as-produced GOQDs exhibited markedly higher cytotoxicity than the chemically reduced counterparts, likely because of (i) effective removal by NaBH4 reduction of redox-active phenanthroline-like moieties that interacted with the electron-transport chain of the bacterial cells, and (ii) diminished production of hydroxyl radicals that were potent bactericidal agents after chemical reduction as a result of increased conjugation within the carbon skeletons.

3.
J Phys Chem Lett ; 10(15): 4409-4416, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31311264

RESUMEN

We report the first demonstration of using trivalent metal hydrated nitrate coordination complexes (TMHNCCs) as novel passivation ligands to control the synthesis of magic sized clusters (MSCs) and quantum dots (QDs) of CsPbBr3 perovskite at room temperature. We can easily tune from QDs to MSCs or produce a mixture of the two by changing the amount of TMHNCC ligands used, with more ligands favoring MSCs. The original TMHNCC introduced, aluminum nitrate nonahydrate [ANN, Al(NO3)3·9H2O], led to the production of aluminum dihydroxide nitrate tetrahydrate {ADNT, [Al(OH)2(NO3)]·4H2O}, with the assistance of oleic acid (OA) and oleylamine (OAm). Through several control experiments, we determined that ADNT is the primary ligand for effectively passivating the MSCs and QDs, with OAm being essential for deprotonating ANN and OA for adjusting the pH of the reaction system. We suggest that ADNT is planar on the surface of the MSCs or QDs with its NO3- and OH- groups binding to the Cs+ and Pb2+ defect sites and Al3+ binding to the Br- defect sites of the MSCs or QDs.

4.
Biomacromolecules ; 18(12): 4113-4120, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-28949131

RESUMEN

The anticoagulant activity of heparin administered during medical interventions must be reversed to restore normal clotting, typically by titrating with protamine. Given the acute toxicity associated with protamine, we endeavored to generate safer heparin antagonists by engineering bacteriophage Qß virus-like particles (VLPs) to display motifs that bind heparin. A particle bearing a single amino acid change from wild-type (T18R) was identified as a promising candidate for heparin antagonism. Surface potential maps generated through molecular modeling reveal that the T18R mutation adds synergistically to adjacent positive charges on the particle surface, resulting in a large solvent-accessible cationic region that is replicated 180 times over the capsid. Chromatography using a heparin-sepharose column confirmed a strong interaction between heparin and the T18R particle. Binding studies using fluorescein-labeled heparin (HepFL) resulted in a concentration-dependent change in fluorescence intensity, which could be perturbed by the addition of unlabeled heparin. Analysis of the fluorescence data yielded a dissociation constant of approximately 1 nM and a 1:1 binding stoichiometry for HepFL:VLP. Dynamic light scattering (DLS) experiments suggested that T18R forms discrete complexes with heparin when the VLP:heparin molar ratios are equivalent, and in vitro clotting assays confirmed the 1:1 binding stoichiometry as full antagonism of heparin is achieved. Biolayer interferometry and backscattering interferometry corroborated the strong interaction of T18R with heparin, yielding Kd ∼ 1-10 nM. These biophysical measurements further validated T18R, and VLPs in general, for potential clinical use as effective, nontoxic heparin antagonists.


Asunto(s)
Allolevivirus/química , Antagonistas de Heparina/química , Heparina/química , Nanopartículas/química , Anticoagulantes/química , Sitios de Unión , Cápside/química , Proteínas de la Cápside/química , Cationes/química , Fluorescencia , Protaminas/química , Unión Proteica
5.
J Phys Chem B ; 120(31): 7767-74, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27428604

RESUMEN

Photosynthetic organisms have mastered the use of "soft" macromolecular assemblies for light absorption and concentration of electronic excitation energy. Nature's design centers on an optically inactive protein-based backbone that acts as a host matrix for an array of light-harvesting pigment molecules. The pigments are organized in space such that excited states can migrate between molecules, ultimately delivering the energy to the reaction center. Here we report our investigation of an artificial light-harvesting energy transfer antenna based on complexes of oppositely charged conjugated polyelectrolytes (CPEs). The conjugated backbone and the charged side chains of the CPE lead to an architecture that simultaneously functions as a structural scaffold and an electronic energy "highway". We find that the process of ionic complex formation leads to a remarkable change in the excitonic wavefunction of the energy acceptor, which manifests in a dramatic increase in the fluorescence quantum yield. We argue that the extended backbone of the donor CPE effectively templates a planarized acceptor polymer, leading to excited states that are highly delocalized along the polymer backbone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA