Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 5(11): e13861, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21085660

RESUMEN

BACKGROUND: Dyskinesias associated with involuntary movements and painful muscle contractions are a common and severe complication of standard levodopa (L-DOPA, L-3,4-dihydroxyphenylalanine) therapy for Parkinson's disease. Pathologic neuroplasticity leading to hyper-responsive dopamine receptor signaling in the sensorimotor striatum is thought to underlie this currently untreatable condition. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative real-time polymerase chain reaction (PCR) was employed to evaluate the molecular changes associated with L-DOPA-induced dyskinesias in Parkinson's disease. With this technique, we determined that thyrotropin releasing hormone (TRH) was greatly increased in the dopamine-depleted striatum of hemi-parkinsonian rats that developed abnormal movements in response to L-DOPA therapy, relative to the levels measured in the contralateral non-dopamine-depleted striatum, and in the striatum of non-dyskinetic control rats. ProTRH immunostaining suggested that TRH peptide levels were almost absent in the dopamine-depleted striatum of control rats that did not develop dyskinesias, but in the dyskinetic rats, proTRH immunostaining was dramatically up-regulated in the striatum, particularly in the sensorimotor striatum. This up-regulation of TRH peptide affected striatal medium spiny neurons of both the direct and indirect pathways, as well as neurons in striosomes. CONCLUSIONS/SIGNIFICANCE: TRH is not known to be a key striatal neuromodulator, but intrastriatal injection of TRH in experimental animals can induce abnormal movements, apparently through increasing dopamine release. Our finding of a dramatic and selective up-regulation of TRH expression in the sensorimotor striatum of dyskinetic rat models suggests a TRH-mediated regulatory mechanism that may underlie the pathologic neuroplasticity driving dopamine hyper-responsivity in Parkinson's disease.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/toxicidad , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Hormona Liberadora de Tirotropina/metabolismo , Análisis de Varianza , Animales , Antiparkinsonianos/toxicidad , Conducta Animal/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Discinesia Inducida por Medicamentos/etiología , Discinesia Inducida por Medicamentos/genética , Inmunohistoquímica , Masculino , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Hormona Liberadora de Tirotropina/genética
2.
J Biomol Screen ; 12(3): 351-60, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17379859

RESUMEN

CAG-triplet repeat extension, translated into polyglutamines within the coding frame of otherwise unrelated gene products, causes 9 incurable neurodegenerative disorders, including Huntington's disease. Although an expansion in the CAG repeat length is the autosomal dominant mutation that causes the fully penetrant neurological phenotypes, the repeat length is inversely correlated with the age of onset. The precise molecular mechanism(s) of neurodegeneration remains elusive, but compelling evidence implicates the protein or its proteolytic fragments as the cause for the gain of novel pathological function(s). The authors sought to identify small molecules that target the selective clearance of polypeptides containing pathological polyglutamine extension. In a high-throughput chemical screen, they identified compounds that facilitate the clearance of a small huntingtin fragment with extended polyglutamines fused to green fluorescent protein reporter. Identified hits were validated in dose-response and toxicity tests. Compounds have been further tested in an assay for clearance of a larger huntingtin fragment, containing either pathological or normal polyglutamine repeats. In this assay, the authors identified compounds selectively targeting the clearance of mutant but not normal huntingtin fragments. These compounds were subjected to a functional assay, which yielded a lead compound that rescues cells from induced mutant polyglutamine toxicity.


Asunto(s)
Evaluación Preclínica de Medicamentos , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Proteínas Fluorescentes Verdes/metabolismo , Peso Molecular , Células PC12 , Péptidos , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Especificidad por Sustrato
3.
Hum Mol Genet ; 15(6): 965-77, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16467349

RESUMEN

Huntington's disease (HD) pathology is well understood at a histological level but a comprehensive molecular analysis of the effect of the disease in the human brain has not previously been available. To elucidate the molecular phenotype of HD on a genome-wide scale, we compared mRNA profiles from 44 human HD brains with those from 36 unaffected controls using microarray analysis. Four brain regions were analyzed: caudate nucleus, cerebellum, prefrontal association cortex [Brodmann's area 9 (BA9)] and motor cortex [Brodmann's area 4 (BA4)]. The greatest number and magnitude of differentially expressed mRNAs were detected in the caudate nucleus, followed by motor cortex, then cerebellum. Thus, the molecular phenotype of HD generally parallels established neuropathology. Surprisingly, no mRNA changes were detected in prefrontal association cortex, thereby revealing subtleties of pathology not previously disclosed by histological methods. To establish that the observed changes were not simply the result of cell loss, we examined mRNA levels in laser-capture microdissected neurons from Grade 1 HD caudate compared to control. These analyses confirmed changes in expression seen in tissue homogenates; we thus conclude that mRNA changes are not attributable to cell loss alone. These data from bona fide HD brains comprise an important reference for hypotheses related to HD and other neurodegenerative diseases.


Asunto(s)
Encéfalo/metabolismo , Perfilación de la Expresión Génica , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Adulto , Anciano , Axones/metabolismo , Encéfalo/patología , Muerte Celular/genética , Femenino , Humanos , Enfermedad de Huntington/patología , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/biosíntesis , Transducción de Señal/genética
4.
Brain Res Mol Brain Res ; 102(1-2): 118-28, 2002 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12191502

RESUMEN

The diminished expression of D1 and D2 dopamine receptors is a well-documented hallmark of Huntington's disease (HD), but relatively little is known about how these changes in receptor populations affect the dopaminergic responses of striatal neurons. Using transgenic mice expressing an N-terminal portion of mutant huntingtin (R6/2 mice), we have examined immediate early gene (IEG) expression as an index of dopaminergic signal transduction. c-fos, jun B, zif268, and N10 mRNA levels and expression patterns were analyzed using quantitative in situ hybridization histochemistry following intraperitoneal administration of selective D1 and D2 family pharmacological agents (SKF-82958 and eticlopride). Basal IEG levels were generally lower in the dorsal subregion of R6/2 striata relative to wild-type control striata at 10-11 weeks of age, a finding in accord with previously reported decreases in D1 and adenosine A2A receptors. D2-antagonist-stimulated IEG expression was significantly reduced in the striata of transgenic animals. In contrast, D1-agonist-induced striatal R6/2 IEG mRNA levels were either equivalent or significantly enhanced relative to control levels, an unexpected result given the reduced level of D1 receptors in R6/2 animals. Understanding the functional bases for these effects may further elucidate the complex pathophysiology of Huntington's disease.


Asunto(s)
Regulación de la Expresión Génica/genética , Genes Inmediatos-Precoces/genética , Enfermedad de Huntington/genética , Neostriado/metabolismo , Neuronas/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Modelos Animales de Enfermedad , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Genes Inmediatos-Precoces/efectos de los fármacos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Neostriado/efectos de los fármacos , Neostriado/fisiopatología , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , ARN Mensajero/metabolismo , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/efectos de los fármacos , Receptores de Dopamina D2/genética , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA