Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 4905, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385458

RESUMEN

α-ketoglutarate (KG), also referred to as 2-oxoglutarate, is a key intermediate of cellular metabolism with pleiotropic functions. Cell-permeable esterified analogs are widely used to study how KG fuels bioenergetic and amino acid metabolism and DNA, RNA, and protein hydroxylation reactions, as cellular membranes are thought to be impermeable to KG. Here we show that esterified KG analogs rapidly hydrolyze in aqueous media, yielding KG that, in contrast to prevailing assumptions, imports into many cell lines. Esterified KG analogs exhibit spurious KG-independent effects on cellular metabolism, including extracellular acidification, arising from rapid hydrolysis and de-protonation of α-ketoesters, and significant analog-specific inhibitory effects on glycolysis or mitochondrial respiration. We observe that imported KG decarboxylates to succinate in the cytosol and contributes minimally to mitochondrial metabolism in many cell lines cultured in normal conditions. These findings demonstrate that nuclear and cytosolic KG-dependent reactions may derive KG from functionally distinct subcellular pools and sources.


Asunto(s)
Aminoácidos/metabolismo , Metabolismo Energético , Ésteres/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mitocondrias/metabolismo , Ácido Succínico/metabolismo , Animales , Línea Celular Tumoral , Citosol/metabolismo , Ésteres/química , Glucólisis , Células HEK293 , Humanos , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Ácidos Cetoglutáricos/química , Ratones , Consumo de Oxígeno , Células RAW 264.7
2.
Sci Adv ; 7(3)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523897

RESUMEN

Triple-negative breast cancer (TNBC) is a subtype of breast cancer without a targeted form of therapy. Unfortunately, up to 70% of patients with TNBC develop resistance to treatment. A known contributor to chemoresistance is dysfunctional mitochondrial apoptosis signaling. We set up a phenotypic small-molecule screen to reveal vulnerabilities in TNBC cells that were independent of mitochondrial apoptosis. Using a functional genetic approach, we identified that a "hit" compound, BAS-2, had a potentially similar mechanism of action to histone deacetylase inhibitors (HDAC). An in vitro HDAC inhibitor assay confirmed that the compound selectively inhibited HDAC6. Using state-of-the-art acetylome mass spectrometry, we identified glycolytic substrates of HDAC6 in TNBC cells. We confirmed that inhibition or knockout of HDAC6 reduced glycolytic metabolism both in vitro and in vivo. Through a series of unbiased screening approaches, we have identified a previously unidentified role for HDAC6 in regulating glycolytic metabolism.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Detección Precoz del Cáncer , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
3.
Cell Rep ; 33(1): 108231, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33027658

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive fibrosis and hypovascularization, resulting in significant intratumoral hypoxia (low oxygen) that contributes to its aggressiveness, therapeutic resistance, and high mortality. Despite oxygen being a fundamental requirement for many cellular and metabolic processes, and the severity of hypoxia in PDAC, the impact of oxygen deprivation on PDAC biology is poorly understood. Investigating how PDAC cells survive in the near absence of oxygen, we find that PDAC cell lines grow robustly in oxygen tensions down to 0.1%, maintaining mitochondrial morphology, membrane potential, and the oxidative metabolic activity required for the synthesis of key metabolites for proliferation. Disrupting electron transfer efficiency by targeting mitochondrial respiratory supercomplex assembly specifically affects hypoxic PDAC proliferation, metabolism, and in vivo tumor growth. Collectively, our results identify a mechanism that enables PDAC cells to thrive in severe, oxygen-limited microenvironments.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Respiración de la Célula/fisiología , Mitocondrias/metabolismo , Adenocarcinoma/patología , Carcinoma Ductal Pancreático/patología , Hipoxia de la Célula , Humanos
4.
Cancer Res ; 80(17): 3556-3567, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32646968

RESUMEN

Despite advancements in treatment options, the overall cure and survival rates for non-small cell lung cancers (NSCLC) remain low. While small-molecule inhibitors of epigenetic regulators have recently emerged as promising cancer therapeutics, their application in patients with NSCLC is limited. To exploit epigenetic regulators as novel therapeutic targets in NSCLC, we performed pooled epigenome-wide CRISPR knockout screens in vitro and in vivo and identified the histone chaperone nucleophosmin 1 (Npm1) as a potential therapeutic target. Genetic ablation of Npm1 significantly attenuated tumor progression in vitro and in vivo. Furthermore, KRAS-mutant cancer cells were more addicted to NPM1 expression. Genetic ablation of Npm1 rewired the balance of metabolism in cancer cells from predominant aerobic glycolysis to oxidative phosphorylation and reduced the population of tumor-propagating cells. Overall, our results support NPM1 as a therapeutic vulnerability in NSCLC. SIGNIFICANCE: Epigenome-wide CRISPR knockout screens identify NPM1 as a novel metabolic vulnerability and demonstrate that targeting NPM1 is a new therapeutic opportunity for patients with NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Técnicas Genéticas , Neoplasias Pulmonares , Proteínas Nucleares/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Epigénesis Genética , Xenoinjertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Proteínas Nucleares/genética , Nucleofosmina
5.
Cell ; 182(3): 641-654.e20, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32615085

RESUMEN

Targeting glycolysis has been considered therapeutically intractable owing to its essential housekeeping role. However, the context-dependent requirement for individual glycolytic steps has not been fully explored. We show that CRISPR-mediated targeting of glycolysis in T cells in mice results in global loss of Th17 cells, whereas deficiency of the glycolytic enzyme glucose phosphate isomerase (Gpi1) selectively eliminates inflammatory encephalitogenic and colitogenic Th17 cells, without substantially affecting homeostatic microbiota-specific Th17 cells. In homeostatic Th17 cells, partial blockade of glycolysis upon Gpi1 inactivation was compensated by pentose phosphate pathway flux and increased mitochondrial respiration. In contrast, inflammatory Th17 cells experience a hypoxic microenvironment known to limit mitochondrial respiration, which is incompatible with loss of Gpi1. Our study suggests that inhibiting glycolysis by targeting Gpi1 could be an effective therapeutic strategy with minimum toxicity for Th17-mediated autoimmune diseases, and, more generally, that metabolic redundancies can be exploited for selective targeting of disease processes.


Asunto(s)
Diferenciación Celular/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Glucosa-6-Fosfato Isomerasa/metabolismo , Glucólisis/genética , Fosforilación Oxidativa , Vía de Pentosa Fosfato/fisiología , Células Th17/metabolismo , Animales , Hipoxia de la Célula/genética , Hipoxia de la Célula/inmunología , Quimera/genética , Cromatografía de Gases , Cromatografía Liquida , Infecciones por Clostridium/inmunología , Citocinas/deficiencia , Citocinas/genética , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Glucosa-6-Fosfato Isomerasa/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Glucólisis/inmunología , Homeostasis/genética , Homeostasis/inmunología , Inflamación/genética , Inflamación/inmunología , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , Membrana Mucosa/microbiología , Vía de Pentosa Fosfato/genética , Vía de Pentosa Fosfato/inmunología , RNA-Seq , Análisis de la Célula Individual , Células Th17/inmunología , Células Th17/patología
6.
Cancer Discov ; 10(7): 1018-1037, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32341021

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) evolves a complex microenvironment comprised of multiple cell types, including pancreatic stellate cells (PSC). Previous studies have demonstrated that stromal supply of alanine, lipids, and nucleotides supports the metabolism, growth, and therapeutic resistance of PDAC. Here we demonstrate that alanine cross-talk between PSCs and PDAC is orchestrated by the utilization of specific transporters. PSCs utilize SLC1A4 and other transporters to rapidly exchange and maintain environmental alanine concentrations. Moreover, PDAC cells upregulate SLC38A2 to supply their increased alanine demand. Cells lacking SLC38A2 fail to concentrate intracellular alanine and undergo a profound metabolic crisis resulting in markedly impaired tumor growth. Our results demonstrate that stromal-cancer metabolic niches can form through differential transporter expression, creating unique therapeutic opportunities to target metabolic demands of cancer. SIGNIFICANCE: This work identifies critical neutral amino acid transporters involved in channeling alanine between pancreatic stellate and PDAC cells. Targeting PDAC-specific alanine uptake results in a metabolic crisis impairing metabolism, proliferation, and tumor growth. PDAC cells specifically activate and require SLC38A2 to fuel their alanine demands that may be exploited therapeutically.This article is highlighted in the In This Issue feature, p. 890.


Asunto(s)
Adenocarcinoma/fisiopatología , Alanina/metabolismo , Carcinoma Ductal Pancreático/fisiopatología , Humanos , Redes y Vías Metabólicas , Transducción de Señal , Microambiente Tumoral
7.
Cell Rep ; 22(12): 3107-3114, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29562167

RESUMEN

Since the discovery of mutations in isocitrate dehydrogenase 1 (IDH1) in gliomas and other tumors, significant efforts have been made to gain a deeper understanding of the consequences of this oncogenic mutation. One aspect of the neomorphic function of the IDH1 R132H enzyme that has received less attention is the perturbation of cellular redox homeostasis. Here, we describe a biosynthetic pathway exhibited by cells expressing mutant IDH1. By virtue of a change in cellular redox homeostasis, IDH1-mutated cells synthesize excess glutamine-derived proline through enhanced activity of pyrroline 5-carboxylate reductase 1 (PYCR1), coupled to NADH oxidation. Enhanced proline biosynthesis partially uncouples the electron transport chain from tricarboxylic acid (TCA) cycle activity through the maintenance of a lower NADH/NAD+ ratio and subsequent reduction in oxygen consumption. Thus, we have uncovered a mechanism by which tumor cell survival may be promoted in conditions associated with perturbed redox homeostasis, as occurs in IDH1-mutated glioma.


Asunto(s)
Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , Mutación , Prolina/biosíntesis , Pirrolina Carboxilato Reductasas/metabolismo , Línea Celular Tumoral , Ciclo del Ácido Cítrico , Técnicas de Silenciamiento del Gen , Glutamina/metabolismo , Homeostasis , Humanos , Mitocondrias/enzimología , Mitocondrias/genética , Oligodendroglioma , Oxidación-Reducción , Pirrolina Carboxilato Reductasas/genética , delta-1-Pirrolina-5-Carboxilato Reductasa
8.
Adv Exp Med Biol ; 899: 89-111, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27325263

RESUMEN

Altered cellular metabolism is now accepted to be at the core of many diseases including cancer. Over the past 20 years, NMR has become a core technology to study these metabolic perturbations in detail. This chapter reviews current NMR-based methods for steady-state metabolism and, in particular, the use of non-radioactive stable isotope-enriched tracers. Opportunities and challenges for each method, such as 1D (1)H NMR spectroscopy and (13)C carbon-based NMR spectroscopic methods, are discussed. Ultimately, the combination of NMR and mass spectra as orthogonal technologies are required to compensate for the drawbacks of each technique when used singly are discussed.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Neoplasias/metabolismo , Isótopos de Carbono , Humanos
9.
Wiley Interdiscip Rev Syst Biol Med ; 8(4): 272-85, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27196610

RESUMEN

Mitochondria are metabolic hubs within mammalian cells and demonstrate significant metabolic plasticity. In oxygenated environments with ample carbohydrate, amino acid, and lipid sources, they are able to use the tricarboxylic acid cycle for the production of anabolic metabolites and ATP. However, in conditions where oxygen becomes limiting for oxidative phosphorylation, they can rapidly signal to increase cytosolic glycolytic ATP production, while awaiting hypoxia-induced changes in the proteome mediated by the activity of transcription factors such as hypoxia-inducible factor 1. Hypoxia is a well-described phenotype of most cancers, driving many aspects of malignancy. Improving our understanding of how mitochondria change their metabolism in response to this stimulus may therefore elicit the design of new selective therapies. Many of the recent advances in our understanding of mitochondrial metabolic plasticity have been acquired through investigations of cancer-associated mutations in metabolic enzymes, including succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase. This review will describe how metabolic perturbations induced by hypoxia and mutations in these enzymes have informed our knowledge in the control of mitochondrial metabolism, and will examine what this may mean for the biology of the cancers in which these mutations are observed. WIREs Syst Biol Med 2016, 8:272-285. doi: 10.1002/wsbm.1334 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Mitocondrias/metabolismo , Animales , Ciclo del Ácido Cítrico , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Hipoxia , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Mitocondrias/enzimología , Fosforilación Oxidativa , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
10.
Nat Commun ; 6: 8784, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26522426

RESUMEN

The tricarboxylic acid (TCA) cycle is a central metabolic pathway responsible for supplying reducing potential for oxidative phosphorylation and anabolic substrates for cell growth, repair and proliferation. As such it thought to be essential for cell proliferation and tissue homeostasis. However, since the initial report of an inactivating mutation in the TCA cycle enzyme complex, succinate dehydrogenase (SDH) in paraganglioma (PGL), it has become clear that some cells and tissues are not only able to survive with a truncated TCA cycle, but that they are also able of supporting proliferative phenotype observed in tumours. Here, we show that loss of SDH activity leads to changes in the metabolism of non-essential amino acids. In particular, we demonstrate that pyruvate carboxylase is essential to re-supply the depleted pool of aspartate in SDH-deficient cells. Our results demonstrate that the loss of SDH reduces the metabolic plasticity of cells, suggesting vulnerabilities that can be targeted therapeutically.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Tumores Neuroendocrinos/enzimología , Paraganglioma/enzimología , Ácido Pirúvico/metabolismo , Succinato Deshidrogenasa/metabolismo , Animales , Ácido Aspártico/metabolismo , Complejo II de Transporte de Electrones/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/metabolismo , Fosforilación Oxidativa , Paraganglioma/genética , Paraganglioma/metabolismo , Succinato Deshidrogenasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...