Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS ES T Water ; 3(4): 1201-1211, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37090120

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are persistent synthetic contaminants that are present globally in water and are exceptionally difficult to remove during conventional water treatment processes. Here, we demonstrate a practical treatment train that combines foam fractionation to concentrate PFAS from groundwater and landfill leachate, followed by an electrochemical oxidation (EO) step to degrade the PFAS. The study combined an up-scaled experimental approach with thorough characterization strategies, including target analysis, PFAS sum parameters, and toxicity testing. Additionally, the EO kinetics were successfully reproduced by a newly developed coupled numerical model. The mean total PFAS degradation over the designed treatment train reached 50%, with long- and short-chain PFAS degrading up to 86 and 31%, respectively. The treatment resulted in a decrease in the toxic potency of the water, as assessed by transthyretin binding and bacterial bioluminescence bioassays. Moreover, the extractable organofluorine concentration of the water decreased by up to 44%. Together, these findings provide an improved understanding of a promising and practical approach for on-site remediation of PFAS-contaminated water.

2.
Analyst ; 146(22): 6981-6989, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34661204

RESUMEN

Mid-infrared waveguide spectroscopy promises highly sensitive detection and characterization of organic molecules. Different material combinations for waveguides and cladding have been demonstrated with promising results, each with its own strengths and weaknesses in terms of sensitivity, transmission window and robustness. In this article we present a 5 µm thick diamond planar waveguide on aluminium nitride cladding, using a new fabrication and polishing method. Diamond has a very wide transmission window in the infrared, and its hardness and high chemical stability allows for chemistries and cleaning protocols that may damage other materials. With an aluminium nitride cladding the waveguide has a useable range between 1000 and 1900 cm-1, which we demonstrate using a tunable quantum cascade laser (QCL). This is a large improvement over silicon dioxide cladding. Compared to previously demonstrated free-standing diamond waveguides, the robustness of the sensor is greatly improved, which allows for a thinner diamond layer and increased sensitivity. The new waveguide was used in a QCL-based optical setup to detect acetone in deuterium oxide and isopropyl alcohol in water. The measurements showed higher sensitivity and lower noise level than previous demonstrations of mid-infrared diamond waveguides, resulting in a two orders of magnitude lower detectable concentration.

3.
J Environ Manage ; 290: 112573, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33873022

RESUMEN

Electrochemical degradation using boron-doped diamond (BDD) electrodes has been proven to be a promising technique for the treatment of water contaminated with per- and poly-fluoroalkyl substances (PFAS). Various studies have demonstrated that the extent of PFAS degradation is influenced by the composition of samples and electrochemical conditions. This study evaluated the significance of several factors, such as the current density, initial concentration of PFAS, concentration of electrolyte, treatment time, and their interactions on the degradation of PFAS. A 24 factorial design was applied to determine the effects of the investigated factors on the degradation of perfluorooctanoic acid (PFOA) and generation of fluoride in spiked water. The best-performing conditions were then applied to the degradation of PFAS in wastewater samples. The results revealed that current density and time were the most important factors for PFOA degradation. In contrast, a high initial concentration of electrolyte had no significant impact on the degradation of PFOA, whereas it decreased the generation of F-. The experimental design model indicated that the treatment of spiked water under a current density higher than 14 mA cm-2 for 3-4 h could degrade PFOA with an efficiency of up to 100% and generate an F- fraction of approximately 40-50%. The observed high PFOA degradation and a low concentration of PFAS degradation products indicated that the mineralization of PFOA was effective. Under the obtained best conditions, the degradation of PFOA in wastewater samples was 44-70%. The degradation efficiency for other PFAS in these samples was 65-80% for perfluorooctane sulfonic acid (PFOS) and 42-52% for 6-2 fluorotelomer sulfonate (6-2 FTSA). The presence of high total organic carbon (TOC) and chloride contents was found to be an important factor affecting the efficiency of PFAS electrochemical degradation in wastewater samples. The current study indicates that the tested method can effectively degrade PFAS in both water and wastewater and suggests that increasing the treatment time is needed to account for the presence of other oxidizable matrices.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Boro , Diamante , Electrodos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...