Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(10): 107886, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37767001

RESUMEN

Polyubiquitinated proteins are primarily degraded by the ubiquitin-proteasome system (UPS). Proteasomes are present both in the cytoplasm and nucleus. Here, we investigated mechanisms coordinating proteasome subcellular localization and activity in a multicellular organism. We identified the nuclear protein-encoding gene akir-1 as a proteasome regulator in a genome-wide Caenorhabditis elegans RNAi screen. We demonstrate that depletion of akir-1 causes nuclear accumulation of endogenous polyubiquitinated proteins in intestinal cells, concomitant with slower in vivo proteasomal degradation in this subcellular compartment. Remarkably, akir-1 is essential for nuclear localization of proteasomes both in oocytes and intestinal cells but affects differentially the subcellular distribution of polyubiquitinated proteins. We further reveal that importin ima-3 genetically interacts with akir-1 and influences nuclear localization of a polyubiquitin-binding reporter. Our study shows that the conserved AKIR-1 is an important regulator of the subcellular function of proteasomes in a multicellular organism, suggesting a role for AKIR-1 in proteostasis maintenance.

2.
Cells ; 12(6)2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36980270

RESUMEN

The deubiquitinase BAP1 (BRCA1-associated protein 1) is associated with BAP1 tumor predisposition syndrome (TPDS). BAP1 is a tumor suppressor gene whose alterations in cancer are commonly caused by gene mutations leading to protein loss of function. By CRISPR-Cas, we have generated mutations in ubh-4, the BAP1 ortholog in Caenorhabditis elegans, to model the functional impact of BAP1 mutations. We have found that a mimicked BAP1 cancer missense mutation (UBH-4 A87D; BAP1 A95D) resembles the phenotypes of ubh-4 deletion mutants. Despite ubh-4 being ubiquitously expressed, the gene is not essential for viability and its deletion causes only mild phenotypes without affecting 20S proteasome levels. Such viability facilitated an RNAi screen for ubh-4 genetic interactors that identified rpn-9, the ortholog of human PSMD13, a gene encoding subunit of the regulatory particle of the 26S proteasome. ubh-4[A87D], similarly to ubh-4 deletion, cause a synthetic genetic interaction with rpn-9 inactivation affecting body size, lifespan, and the development of germ cells. Finally, we show how ubh-4 inactivation sensitizes animals to the chemotherapeutic agent Bortezomib, which is a proteasome inhibitor. Thus, we have established a model to study BAP1 cancer-related mutations in C. elegans, and our data points toward vulnerabilities that should be studied to explore therapeutic opportunities within the complexity of BAP1 tumors.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Complejo de la Endopetidasa Proteasomal , Ubiquitina Tiolesterasa , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Mesotelioma/genética , Mesotelioma/patología , Mesotelioma Maligno/genética , Mutación/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Mutaciones Letales Sintéticas , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
3.
Cells ; 9(8)2020 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784405

RESUMEN

The ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are the two main eukaryotic intracellular proteolytic systems involved in maintaining proteostasis. Several studies have reported on the interplay between the UPS and ALP, however it remains largely unknown how compromised autophagy affects UPS function in vivo. Here, we have studied the crosstalk between the UPS and ALP by investigating the tissue-specific effect of autophagy genes on the UPS at an organismal level. Using transgenic Caenorhabditis elegans expressing fluorescent UPS reporters, we show that the downregulation of the autophagy genes lgg-1 and lgg-2 (ATG8/LC3/GABARAP), bec-1 (BECLIN1), atg-7 (ATG7) and epg-5 (mEPG5) by RNAi decreases proteasomal degradation, concomitant with the accumulation of polyubiquitinated proteasomal substrates in a tissue-specific manner. For some of these genes, the changes in proteasomal degradation occur without a detectable alteration in proteasome tissue expression levels. In addition, the lgg-1 RNAi-induced reduction in proteasome activity in intestinal cells is not dependent on sqst-1/p62 accumulation. Our results illustrate that compromised autophagy can affect UPS in a tissue-specific manner, and demonstrate that UPS does not function as a direct compensatory mechanism in an animal. Further, a more profound understanding of the multilayered crosstalk between UPS and ALP can facilitate the development of therapeutic options for various disorders linked to dysfunction in proteostasis.


Asunto(s)
Autofagia/genética , Caenorhabditis elegans/metabolismo , Lisosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Proteína 7 Relacionada con la Autofagia/genética , Proteínas de Caenorhabditis elegans/genética , Expresión Génica , Regulación de la Expresión Génica , Proteínas Asociadas a Microtúbulos/genética , Proteolisis , Proteostasis , Proteínas de Transporte Vesicular/genética
4.
Cell Stress Chaperones ; 25(3): 563-572, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32306217

RESUMEN

Variation in ambient growth temperature can cause changes in normal animal physiology and cellular functions such as control of protein homeostasis. A key mechanism for maintaining proteostasis is the selective degradation of polyubiquitinated proteins, mediated by the ubiquitin-proteasome system (UPS). It is still largely unsolved how temperature changes affect the UPS at the organismal level. Caenorhabditis elegans nematodes are normally bred at 20 °C, but for some experimental conditions, 25 °C is often used. We studied the effect of 25 °C on C. elegans UPS by measuring proteasome activity and polyubiquitinated proteins both in vitro in whole animal lysates and in vivo in tissue-specific transgenic reporter strains. Our results show that an ambient temperature shift from 20 to 25 °C increases the UPS activity in the intestine, but not in the body wall muscle tissue, where a concomitant accumulation of polyubiquitinated proteins occurs. These changes in the UPS activity and levels of polyubiquitinated proteins were not detectable in whole animal lysates. The exposure of transgenic animals to 25 °C also induced ER stress reporter fluorescence, but not the fluorescence of a heat shock responsive reporter, albeit detection of a mild induction in hsp-16.2 mRNA levels. In conclusion, C. elegans exhibits tissue-specific responses of the UPS as an organismal strategy to cope with a rise in ambient temperature.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Temperatura , Ubiquitina/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Intestinos , Músculos/metabolismo , Especificidad de Órganos , Proteínas Ubiquitinadas/metabolismo
5.
Adv Exp Med Biol ; 1233: 101-115, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32274754

RESUMEN

The most common form of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), has a dismal 5-year survival rate of less than 5%. Radical surgical resection, in combination with adjuvant chemotherapy, provides the best option for long-term patient survival. However, only approximately 20% of patients are resectable at the time of diagnosis, due to locally advanced or metastatic disease. There is an urgent need for the identification of new, specific, and more sensitive biomarkers for diagnosis, prognosis, and prediction to improve the treatment options for pancreatic cancer patients. Dysregulation of proteostasis is linked to many pathophysiological conditions, including various types of cancer. In this review, we report on findings relating to the main cellular protein degradation systems, the ubiquitin-proteasome system (UPS) and autophagy, in pancreatic cancer. The expression of several components of the proteolytic network, including E3 ubiquitin-ligases and deubiquitinating enzymes, are dysregulated in PDAC, which accounts for approximately 90% of all pancreatic malignancies. In the future, a deeper understanding of the emerging role of proteostasis in pancreatic cancer has the potential to provide clinically relevant biomarkers and new strategies for combinatorial therapeutic options to better help treat the patients.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteolisis , Proteostasis , Biomarcadores de Tumor , Humanos , Ubiquitina/metabolismo
6.
eNeuro ; 6(4)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31387876

RESUMEN

The mammalian PIM family of serine/threonine kinases regulate several cellular functions, such as cell survival and motility. Because PIM expression is observed in sensory organs, such as olfactory epithelium, we now wanted to explore the physiological roles of PIM kinases there. As our model organism, we used the Caenorhabditis elegans nematodes, which express two PIM-related kinases, PRK-1 and PRK-2. We demonstrated PRKs to be true PIM orthologs with similar substrate specificity as well as sensitivity to PIM-inhibitory compounds. When we analyzed the effects of pan-PIM inhibitors on C. elegans sensory functions, we observed that PRK activity is selectively required to support olfactory sensations to volatile repellents and attractants sensed by AWB and AWCON neurons, respectively, but is dispensable for gustatory sensations. Analyses of prk-deficient mutant strains confirmed these findings and suggested that PRK-1, but not PRK-2 is responsible for the observed effects on olfaction. This regulatory role of PRK-1 is further supported by its observed expression in the head and tail neurons, including AWB and AWC neurons. Based on the evolutionary conservation of PIM-related kinases, our data may have implications in regulation of also mammalian olfaction.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Neuronas Receptoras Olfatorias/enzimología , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Olfato/fisiología , Secuencia de Aminoácidos , Animales , Evolución Molecular , Odorantes , Especificidad de la Especie
7.
Front Aging Neurosci ; 11: 9, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30760997

RESUMEN

A functional protein quality control machinery is crucial to maintain cellular and organismal physiology. Perturbation in the protein homeostasis network can lead to the formation of misfolded and aggregated proteins that are a hallmark of protein conformational disorders and aging. Protein aggregation is counteracted by the action of chaperones that can resolubilize aggregated proteins. An alternative protein aggregation clearance strategy is the elimination by proteolysis employing the ubiquitin proteasome system (UPS) or autophagy. Little is known how these three protein aggregate clearance strategies are regulated and coordinated in an organism with the progression of aging or upon expression of disease-associated proteins. To unravel the crosstalk between the protein aggregate clearance options, we investigated how autophagy and the UPS respond to perturbations in protein disaggregation capacity. We found that autophagy is induced as a potential compensatory mechanism, whereas the UPS exhibits reduced capacity upon depletion of disaggregating chaperones in C. elegans and HEK293 cells. The expression of amyloid proteins Aß3-42 and Q40 result in an impairment of autophagy as well as the UPS within the same and even across tissues. Our data indicate a tight coordination between the different nodes of the proteostasis network (PN) with the progression of aging and upon imbalances of the capacity of each clearance mechanism.

8.
PLoS One ; 13(2): e0193125, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29474458

RESUMEN

Gastric cancer is the second most common cause of cancer-related mortality worldwide. Accurate prediction of disease progression is difficult, and new biomarkers for clinical use are essential. Recently, we reported that the proteasome-associated deubiquitinating enzyme UCHL5/Uch37 is a new prognostic marker in both rectal cancer and pancreatic ductal adenocarcinoma. Here, we have assessed by immunohistochemistry UCHL5 tumor expression in gastric cancer. The study cohort comprised 650 patients, who underwent surgery in Helsinki University Hospital, Finland, between 1983 and 2009. We investigated the association of cytoplasmic UCHL5 tumor expression to assess clinicopathological parameters and patient survival. Positive cytoplasmic UCHL5 tumor immunoexpression is linked to increased survival of patients with small (<5 cm) tumors (p = 0.001), disease stages I-II (p = 0.025), and age 66 years or older (p = 0.037). UCHL5 is thus a potential marker in gastric cancer with new prognostic relevance.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Citoplasma , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/biosíntesis , Neoplasias Gástricas , Ubiquitina Tiolesterasa/biosíntesis , Anciano , Citoplasma/enzimología , Citoplasma/patología , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Gástricas/enzimología , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Tasa de Supervivencia
9.
PLoS One ; 12(8): e0183403, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28817671

RESUMEN

The ubiquitin-proteasome system (UPS) plays a crucial part in normal cell function by mediating intracellular protein clearance. We have previously shown that UPS-mediated protein degradation varies in a cell type-specific manner in C. elegans. Here, we use formalin-fixed, paraffin-embedded C. elegans sections to enable studies on endogenous proteasome tissue expression. We show that the proteasome immunoreactivity pattern differs between cell types and within subcellular compartments in adult wild-type (N2) C. elegans. Interestingly, widespread knockdown of proteasome subunits by RNAi results in tissue-specific changes in proteasome expression instead of a uniform response. In addition, long-lived daf-2(e1370) mutants with impaired insulin/IGF-1 signaling (IIS) display similar proteasome tissue expression as aged-matched wild-type animals. Our study emphasizes the importance of alternate approaches to the commonly used whole animal lysate-based methods to detect changes in proteasome expression occurring at the sub-cellular, cell or tissue resolution level in a multicellular organism.


Asunto(s)
Caenorhabditis elegans/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Caenorhabditis elegans/genética , Inmunohistoquímica , Factor I del Crecimiento Similar a la Insulina/metabolismo , Mutación , Transducción de Señal
10.
Tumour Biol ; 39(7): 1010428317716078, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28681694

RESUMEN

Colorectal cancer is among the three most common cancer types for both genders, with a rising global incidence. To date, prognostic evaluation is difficult and largely dependent on early detection and successful surgery. UCHL5/Uch37 is an integral part of the protein homeostasis network as one of the three deubiquitinating enzymes associated with the 26S proteasome. Here, we have investigated in colorectal cancer the possible association of UCHL5 tumor expression and patient survival. UCHL5 tumor expression was evaluated by immunohistochemistry in 779 surgically treated colorectal cancer patients from Helsinki University Hospital, Finland, with assessment of clinicopathological parameters and the effect of UCHL5 expression on patient survival. High and undetectable UCHL5 expression both correlated with increased overall disease-specific survival in the subgroup of patients with lymph-node-positive (Dukes C/stage III) rectal cancer. Within this subgroup of 105 stage-III rectal cancer patients, none of the 7 with high UCHL5 expression died of colorectal cancer within 10 years after surgery ( p = 0.012). A similar, though less prominent, survival trend occurred throughout the whole patient cohort. In conclusion, UCHL5 is a promising novel prognostic marker in lymph-node-positive rectal cancer. Our results also advance the currently limited knowledge of biomarkers in colorectal cancer treatment.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Ganglios Linfáticos/patología , Ubiquitina Tiolesterasa/genética , Anciano , Biomarcadores de Tumor/biosíntesis , Neoplasias Colorrectales/patología , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Ubiquitina Tiolesterasa/biosíntesis
11.
Tumour Biol ; 39(6): 1010428317710411, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28653876

RESUMEN

Pancreatic ductal adenocarcinoma is a lethal disease with an overall 5-year survival of less than 5%. Prognosis among surgically treated patients is difficult and identification of new biomarkers is essential for accurate prediction of patient outcome. As part of one of the major cellular protein degradation systems, the proteasome plays a fundamental role in both physiological and pathophysiological conditions including cancer. The proteasome-associated deubiquitinating enzyme ubiquitin C-terminal hydrolase L5 (UCHL5)/Uch37 is a modulator of proteasome activity with cancer prognostic marker potential. Cytoplasmic and nuclear immunoexpression of UCHL5 was evaluated in 154 surgical specimens from pancreatic ductal adenocarcinoma patients treated at Helsinki University Hospital, Finland, in 2000-2011. UCHL5 expression in relation to clinicopathological parameters and the association between UCHL5 In this study, positive expression and patient survival were assessed. Positive nuclear UCHL5 expression was associated with increased patient survival ( p = 0.005). A survival benefit was also detectable in these subgroups of patients: over 65 years ( p < 0.001), at tumor stages IIB to III ( p = 0.007), or with lymph-node positivity ( p = 0.006). In stages IIB to III disease, patients with positive nuclear UCHL5 expression showed a twofold increase in 5-year cancer-specific survival compared to those with negative expression. Multivariate analysis identified positive nuclear UCHL5 expression as an independent prognostic factor ( p = 0.012). In conclusion, UCHL5 expression could function as a prognostic marker in pancreatic ductal adenocarcinoma, particularly at disease stages IIB to III. As UCHL5 is one of the few markers predicting increased survival, our results may be of clinical relevance.


Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor/biosíntesis , Carcinoma Ductal Pancreático/genética , Ubiquitina Tiolesterasa/biosíntesis , Adenocarcinoma/patología , Adenocarcinoma/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/cirugía , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Ubiquitina Tiolesterasa/genética
12.
Methods Mol Biol ; 1449: 215-22, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27613038

RESUMEN

The ubiquitin-proteasome system (UPS) plays a key role in maintaining proteostasis by degrading most of the cellular proteins. Traditionally, UPS activity is studied in vitro, in yeast, or in mammalian cell cultures by using short-lived GFP-based UPS reporters. Here, we present protocols for two fluorescent tools facilitating real-time imaging of UPS activity in living animals. We have generated transgenic Caenorhabditis elegans (C. elegans) expressing a photoconvertible UbG76V-Dendra2 UPS reporter, which permits measurement of reporter degradation by the proteasome independently of reporter protein synthesis, and a fluorescent polyubiquitin-binding reporter for detection of the endogenous pool of Lys48-linked polyubiquitinated proteasomal substrates. These reporter systems facilitate cell- and tissue-specific analysis of UPS activity especially in young adult animals, but can also be used for studies during development, aging, and for example stress conditions.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Proteostasis/genética , Proteostasis/fisiología
13.
Antioxid Redox Signal ; 25(16): 855-869, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-26886723

RESUMEN

AIMS: Proteasomes are constituents of the cellular proteolytic networks that maintain protein homeostasis through regulated proteolysis of normal and abnormal (in any way) proteins. Genetically mediated proteasome activation in multicellular organisms has been shown to promote longevity and to exert protein antiaggregation activity. In this study, we investigate whether compound-mediated proteasome activation is feasible in a multicellular organism and we dissect the effects of such approach in aging and Alzheimer's disease (AD) progression. RESULTS: Feeding of wild-type Caenorhabditis elegans with 18α-glycyrrhetinic acid (18α-GA; a previously shown proteasome activator in cell culture) results in enhanced levels of proteasome activities that lead to a skinhead-1- and proteasome activation-dependent life span extension. The elevated proteasome function confers lower paralysis rates in various AD nematode models accompanied by decreased Aß deposits, thus ultimately decelerating the progression of AD phenotype. More importantly, similar positive results are also delivered when human and murine cells of nervous origin are subjected to 18α-GA treatment. INNOVATION: This is the first report of the use of 18α-GA, a diet-derived compound as prolongevity and antiaggregation factor in the context of a multicellular organism. CONCLUSION: Our results suggest that proteasome activation with downstream positive outcomes on aging and AD, an aggregation-related disease, is feasible in a nongenetic manipulation manner in a multicellular organism. Moreover, they unveil the need for identification of antiaging and antiamyloidogenic compounds among the nutrients found in our normal diet. Antioxid. Redox Signal. 25, 855-869.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Ácido Glicirretínico/análogos & derivados , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Muerte Celular , Células Cultivadas , Progresión de la Enfermedad , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/farmacología , Longevidad , Neuronas/efectos de los fármacos , Oxidación-Reducción , Fenotipo , Agregación Patológica de Proteínas/metabolismo
14.
PLoS Pathog ; 11(3): e1004711, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25747942

RESUMEN

Certain RNA and DNA viruses that infect plants, insects, fish or poikilothermic animals encode Class 1 RNaseIII endoribonuclease-like proteins. dsRNA-specific endoribonuclease activity of the RNaseIII of rock bream iridovirus infecting fish and Sweet potato chlorotic stunt crinivirus (SPCSV) infecting plants has been shown. Suppression of the host antiviral RNA interference (RNAi) pathway has been documented with the RNaseIII of SPCSV and Heliothis virescens ascovirus infecting insects. Suppression of RNAi by the viral RNaseIIIs in non-host organisms of different kingdoms is not known. Here we expressed PPR3, the RNaseIII of Pike-perch iridovirus, in the non-hosts Nicotiana benthamiana (plant) and Caenorhabditis elegans (nematode) and found that it cleaves double-stranded small interfering RNA (ds-siRNA) molecules that are pivotal in the host RNA interference (RNAi) pathway and thereby suppresses RNAi in non-host tissues. In N. benthamiana, PPR3 enhanced accumulation of Tobacco rattle tobravirus RNA1 replicon lacking the 16K RNAi suppressor. Furthermore, PPR3 suppressed single-stranded RNA (ssRNA)--mediated RNAi and rescued replication of Flock House virus RNA1 replicon lacking the B2 RNAi suppressor in C. elegans. Suppression of RNAi was debilitated with the catalytically compromised mutant PPR3-Ala. However, the RNaseIII (CSR3) produced by SPCSV, which cleaves ds-siRNA and counteracts antiviral RNAi in plants, failed to suppress ssRNA-mediated RNAi in C. elegans. In leaves of N. benthamiana, PPR3 suppressed RNAi induced by ssRNA and dsRNA and reversed silencing; CSR3, however, suppressed only RNAi induced by ssRNA and was unable to reverse silencing. Neither PPR3 nor CSR3 suppressed antisense-mediated RNAi in Drosophila melanogaster. These results show that the RNaseIII enzymes of RNA and DNA viruses suppress RNAi, which requires catalytic activities of RNaseIII. In contrast to other viral silencing suppression proteins, the RNaseIII enzymes are homologous in unrelated RNA and DNA viruses and can be detected in viral genomes using gene modeling and protein structure prediction programs.


Asunto(s)
Crinivirus/metabolismo , Proteína Catiónica del Eosinófilo/metabolismo , Interacciones Huésped-Parásitos/fisiología , Iridovirus/metabolismo , Interferencia de ARN/fisiología , Proteínas Virales/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/virología , Immunoblotting , Mutagénesis Sitio-Dirigida , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa , ARN Bicatenario , ARN Interferente Pequeño/biosíntesis , Nicotiana/virología , Transfección
15.
G3 (Bethesda) ; 4(1): 173-83, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24192838

RESUMEN

The exocyst is a conserved protein complex that is involved in tethering secretory vesicles to the plasma membrane and regulating cell polarity. Despite a large body of work, little is known how exocyst function is controlled. To identify regulators for exocyst function, we performed a targeted RNA interference (RNAi) screen in Caenorhabditis elegans to uncover kinases and phosphatases that genetically interact with the exocyst. We identified seven kinase and seven phosphatase genes that display enhanced phenotypes when combined with hypomorphic alleles of exoc-7 (exo70), exoc-8 (exo84), or an exoc-7;exoc-8 double mutant. We show that in line with its reported role in exocytotic membrane trafficking, a defective exoc-8 caused accumulation of exocytotic soluble NSF attachment protein receptor (SNARE) proteins in both intestinal and neuronal cells in C. elegans. Down-regulation of the phosphatase protein phosphatase 2A (PP2A) phosphatase regulatory subunit sur-6/B55 gene resulted in accumulation of exocytic SNARE proteins SNB-1 and SNAP-29 in wild-type and in exoc-8 mutant animals. In contrast, RNAi of the kinase par-1 caused reduced intracellular green fluorescent protein signal for the same proteins. Double RNAi experiments for par-1, pkc-3, and sur-6/B55 in C. elegans suggest a possible cooperation and involvement in postembryo lethality, developmental timing, as well as SNARE protein trafficking. Functional analysis of the homologous kinases and phosphatases in Drosophila median neurosecretory cells showed that atypical protein kinase C kinase and phosphatase PP2A regulate exocyst-dependent, insulin-like peptide secretion. Collectively, these results characterize kinases and phosphatases implicated in the regulation of exocyst function, and suggest the possibility for interplay between the par-1 and pkc-3 kinases and the PP2A phosphatase regulatory subunit sur-6 in this process.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Alelos , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/metabolismo , Exocitosis , Mutación , Fenotipo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
16.
Cell Rep ; 3(6): 1980-95, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23770237

RESUMEN

The proteasome plays an important role in proteostasis by carrying out controlled protein degradation in the cell. Impairments in proteasome function are associated with severe and often age-related diseases. Here, we have characterized a molecular mechanism linking insulin/IGF-1 signaling (IIS) to proteasome activity. We show that decreased IIS, which promotes proteostasis and longevity, increases proteasome activity through the FOXO transcription factor DAF-16 in C. elegans. Furthermore, we reveal that DAF-16 represses expression of the proteasome-associated deubiquitinating enzyme ubh-4, which we suggest functions as a tissue-specific proteasome inhibitor. Finally, we demonstrate that proteasome activation through downregulation of the ubh-4 human ortholog uchl5 increases degradation of proteotoxic proteins in mammalian cells. In conclusion, we have established a mechanism by which the evolutionarily conserved IIS contributes to the regulation of proteasome activity in a multicellular organism.


Asunto(s)
Insulina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/genética , Animales , Caenorhabditis elegans , Línea Celular Tumoral , Humanos , Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Transducción de Señal , Factores de Transcripción/metabolismo
17.
Nucleic Acids Res ; 41(10): 5368-81, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23580547

RESUMEN

Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic description of the Caenorhabditis elegans NER-defective xpa-1 mutant and compare the proteome and transcriptome signatures. Both methods indicated activation of oxidative stress responses, which was substantiated biochemically by a bioenergetic shift involving increased steady-state reactive oxygen species (ROS) and Adenosine triphosphate (ATP) levels. We identify the lesion-detection enzymes of Base Excision Repair (NTH-1) and global genome NER (XPC-1 and DDB-1) as upstream requirements for transcriptomic reprogramming as RNA-interference mediated depletion of these enzymes prevented up-regulation of genes over-expressed in the xpa-1 mutant. The transcription factors SKN-1 and SLR-2, but not DAF-16, were identified as effectors of reprogramming. As shown in human XPA cells, the levels of transcription-blocking 8,5'-cyclo-2'-deoxyadenosine lesions were reduced in the xpa-1 mutant compared to the wild type. Hence, accumulation of cyclopurines is unlikely to be sufficient for reprogramming. Instead, our data support a model where the lesion-detection enzymes NTH-1, XPC-1 and DDB-1 play active roles to generate a genomic stress signal sufficiently strong to result in transcriptomic reprogramming in the xpa-1 mutant.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Reparación del ADN , Proteoma , Transcriptoma , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Animales , Antioxidantes/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , ADN Glicosilasas/genética , Endonucleasas/genética , Mutación , Purinas/metabolismo , Proteínas Ubiquitinadas/metabolismo
18.
PLoS One ; 7(2): e32077, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22389680

RESUMEN

The exocyst complex is required for cell polarity regulation and the targeting and tethering of transport vesicles to the plasma membrane. The complex is structurally well conserved, however, the functions of individual subunits and their regulation is poorly understood. Here we characterize the mutant phenotypes for the exocyst complex genes exoc-7 (exo70) and exoc-8 (exo84) in Caenorhabditis elegans. The mutants display pleiotropic behavior defects that resemble those observed in cilia mutants (slow growth, uncoordinated movement, defects in chemo-, mechano- and thermosensation). However, no obvious morphological defects in cilia were observed. A targeted RNAi screen for small GTPases identified eleven genes with enhanced phenotypes when combined with exoc-7, exoc-8 single and exoc-7;exoc-8 double mutants. The screen verified previously identified functional links between the exocyst complex and small GTPases and, in addition, identified several novel potential regulators of exocyst function. The exoc-8 and exoc-7;exoc-8 mutations caused a significant size increase in the rab-10 RNAi-induced endocytic vacuoles in the intestinal epithelial cells. In addition, exoc-8 and exoc-7;exoc-8 mutations resulted in up-regulation of RAB-10 expression and affected the accumulation of endocytic marker proteins in these cells in response to rab-10 RNAi. The findings identify novel, potential regulators for exocyst function and show that exoc-7 and exoc-8 are functionally linked to rab-10 in endosomal trafficking in intestinal epithelial cells in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Caenorhabditis elegans/genética , Endocitosis/genética , Endocitosis/fisiología , Exocitosis/genética , Exocitosis/fisiología , Proteínas de Unión al GTP Monoméricas/genética , Mutación , Interferencia de ARN/fisiología , Proteínas de Transporte Vesicular/genética
19.
PLoS Genet ; 7(6): e1002119, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21695230

RESUMEN

SKN-1, the Caenorhabditis elegans Nrf1/2/3 ortholog, promotes both oxidative stress resistance and longevity. SKN-1 responds to oxidative stress by upregulating genes that detoxify and defend against free radicals and other reactive molecules, a SKN-1/Nrf function that is both well-known and conserved. Here we show that SKN-1 has a broader and more complex role in maintaining cellular stress defenses. SKN-1 sustains expression and activity of the ubiquitin-proteasome system (UPS) and coordinates specific protective responses to perturbations in protein synthesis or degradation through the UPS. If translation initiation or elongation is impaired, SKN-1 upregulates overlapping sets of cytoprotective genes and increases stress resistance. When proteasome gene expression and activity are blocked, SKN-1 activates multiple classes of proteasome subunit genes in a compensatory response. SKN-1 thereby maintains UPS activity in the intestine in vivo under normal conditions and promotes survival when the proteasome is inhibited. In contrast, when translation elongation is impaired, SKN-1 does not upregulate proteasome genes, and UPS activity is then reduced. This indicates that UPS activity depends upon presence of an intact translation elongation apparatus; and it supports a model, suggested by genetic and biochemical studies in yeast, that protein synthesis and degradation may be coupled processes. SKN-1 therefore has a critical tissue-specific function in increasing proteasome gene expression and UPS activity under normal conditions, as well as when the UPS system is stressed, but mounts distinct responses when protein synthesis is perturbed. The specificity of these SKN-1-mediated stress responses, along with the apparent coordination between UPS and translation elongation activity, may promote protein homeostasis under stress or disease conditions. The data suggest that SKN-1 may increase longevity, not only through its well-documented role in boosting stress resistance, but also through contributing to protein homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Extensión de la Cadena Peptídica de Translación , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Complejo de la Endopetidasa Proteasomal/genética , Factores de Transcripción/genética , Ubiquitina/genética
20.
Nat Methods ; 7(6): 473-8, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20453865

RESUMEN

The ubiquitin-proteasome system (UPS) orchestrates many cellular and tissue-specific processes by degrading damaged and key regulatory proteins. To enable investigation of UPS activity in different cell types in a living animal, we developed a photoconvertible fluorescent UPS reporter system for live imaging and quantification of protein degradation in Caenorhabditis elegans. Our reporter consists of the photoconvertible fluorescent protein Dendra2 targeted for proteasomal degradation by fusion to the UbG76V mutant form of ubiquitin. In contrast to previous reporters, this system permits quantification of UPS activity independently of protein synthesis. Our reporter revealed that UPS-mediated protein degradation varies in a cell type-specific and age-dependent manner in C. elegans.


Asunto(s)
Caenorhabditis elegans/metabolismo , Proteínas Luminiscentes/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Ubiquitina/metabolismo , Envejecimiento/metabolismo , Animales , Proteínas de Caenorhabditis elegans/fisiología , Dopamina/fisiología , Microscopía Fluorescente , Interferencia de ARN , Receptores Citoplasmáticos y Nucleares/fisiología , Ácido gamma-Aminobutírico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...