Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
JAMA Netw Open ; 7(5): e2412055, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38787560

RESUMEN

Importance: Heat waves are increasing in frequency, intensity, and duration and may be acutely associated with pregnancy outcomes. Objective: To examine changes in daily rates of preterm and early-term birth after heat waves in a 25-year nationwide study. Design, Setting, and Participants: This cohort study of singleton births used birth records from 1993 to 2017 from the 50 most populous US metropolitan statistical areas (MSAs). The study included 53 million births, covering 52.8% of US births over the period. Data were analyzed between October 2022 and March 2023 at the National Center for Health Statistics. Exposures: Daily temperature data from Daymet at 1-km2 resolution were averaged over each MSA using population weighting. Heat waves were defined in the 4 days (lag, 0-3 days) or 7 days (lag, 0-6 days) preceding birth. Main Outcomes and Measures: Daily counts of preterm birth (28 to <37 weeks), early-term birth (37 to <39 weeks), and ongoing pregnancies in each gestational week on each day were enumerated in each MSA. Rate ratios for heat wave metrics were obtained from time-series models restricted to the warm season (May to September) adjusting for MSA, year, day of season, and day of week, and offset by pregnancies at risk. Results: There were 53 154 816 eligible births in the 50 MSAs from 1993 to 2017; 2 153 609 preterm births and 5 795 313 early-term births occurring in the warm season were analyzed. A total of 30.0% of mothers were younger than 25 years, 53.8% were 25 to 34 years, and 16.3% were 35 years or older. Heat waves were positively associated with daily rates of preterm and early-term births, showing a dose-response association with heat wave duration and temperatures and stronger associations in the more acute 4-day window. After 4 consecutive days of mean temperatures exceeding the local 97.5th percentile, the rate ratio for preterm birth was 1.02 (95% CI, 1.00-1.03), and the rate ratio for early-term birth was 1.01 (95% CI, 1.01-1.02). For the same exposure, among those who were 29 years of age or younger, had a high school education or less, and belonged to a racial or ethnic minority group, the rate ratios were 1.04 (95% CI, 1.02-1.06) for preterm birth and 1.03 (95% CI, 1.02-1.05) for early-term birth. Results were robust to alternative heat wave definitions, excluding medically induced deliveries, and alternative statistical model specifications. Conclusions and Relevance: In this cohort study, preterm and early-term birth rates increased after heat waves, particularly among socioeconomically disadvantaged subgroups. Extreme heat events have implications for perinatal health.


Asunto(s)
Nacimiento Prematuro , Humanos , Femenino , Embarazo , Estados Unidos/epidemiología , Nacimiento Prematuro/epidemiología , Adulto , Recién Nacido , Estudios de Cohortes , Calor/efectos adversos , Adulto Joven , Resultado del Embarazo/epidemiología , Calor Extremo/efectos adversos
2.
Sci Rep ; 13(1): 9570, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311771

RESUMEN

Extreme heat events are occurring more frequently and with greater intensity due to climate change. They result in increased heat stress to populations causing human health impacts and heat-related deaths. The urban environment can also exacerbate heat stress because of man-made materials and increased population density. Here we investigate the extreme heatwaves in the western U.S. during the summer of 2021. We show the atmospheric scale interactions and spatiotemporal dynamics that contribute to increased temperatures across the region for both urban and rural environments. In 2021, daytime maximum temperatures during heat events in eight major cities were 10-20 °C higher than the 10-year average maximum temperature. We discuss the temperature impacts associated with processes across scales: climate or long-term change, the El Niño-Southern Oscillation, synoptic high-pressure systems, mesoscale ocean/lake breezes, and urban climate (i.e., urban heat islands). Our findings demonstrate the importance of scale interactions impacting extreme heat and the need for holistic approaches in heat mitigation strategies.

3.
Fire (Basel) ; 5(1)2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35295881

RESUMEN

Wildland fires produce smoke plumes that impact air quality and human health. To understand the effects of wildland fire smoke on humans, the amount and composition of the smoke plume must be quantified. Using a fire emissions inventory is one way to determine the emissions rate and composition of smoke plumes from individual fires. There are multiple fire emissions inventories, and each uses a different method to estimate emissions. This paper presents a comparison of four emissions inventories and their products: Fire INventory from NCAR (FINN version 1.5), Global Fire Emissions Database (GFED version 4s), Missoula Fire Labs Emissions Inventory (MFLEI (250 m) and MFLEI (10 km) products), and Wildland Fire Emissions Inventory System (WFEIS (MODIS) and WFEIS (MTBS) products). The outputs from these inventories are compared directly. Because there are no validation datasets for fire emissions, the outlying points from the Bayesian models developed for each inventory were compared with visible images and fire radiative power (FRP) data from satellite remote sensing. This comparison provides a framework to check fire emissions inventory data against additional data by providing a set of days to investigate closely. Results indicate that FINN and GFED likely underestimate emissions, while the MFLEI products likely overestimate emissions. No fire emissions inventory matched the temporal distribution of emissions from an external FRP dataset. A discussion of the differences impacting the emissions estimates from the four fire emissions inventories is provided, including a qualitative comparison of the methods and inputs used by each inventory and the associated strengths and limitations.

4.
Geohealth ; 6(1): e2021GH000535, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35079670

RESUMEN

Accelerated urbanization increases both the frequency and intensity of heatwaves (HW) and urban heat islands (UHIs). An extreme HW event occurred in 2012 summer that caused temperatures of more than 40°C in Chicago, Illinois, USA, which is a highly urbanized city impacted by UHIs. In this study, multiple numerical models, including the High Resolution Land Data Assimilation System (HRLDAS) and Weather Research and Forecasting (WRF) model, were used to simulate the HW and UHI, and their performance was evaluated. In addition, sensitivity testing of three different WRF configurations was done to determine the impact of increasing model complexity in simulating urban meteorology. Model performances were evaluated based on the statistical performance metrics, the application of a multi-layer urban canopy model (MLUCM) helps WRF to provide the best performance in this study. HW caused rural temperatures to increase by ∼4°C, whereas urban Chicago had lower magnitude increases from the HW (∼2-3°C increases). Nighttime UHI intensity (UHII) ranged from 1.44 to 2.83°C during the study period. Spatiotemporal temperature fields were used to estimate the potential heat-related exposure and to quantify the Excessive Heat Factor (EHF). The EHF during the HW episode provides a risk map indicating that while urban Chicago had higher heat-related stress during this event, the rural area also had high risk, especially during nighttime in central Illinois. This study provides a reliable method to estimate spatiotemporal exposures for future studies of heat-related health impacts.

5.
Environ Sci Technol ; 55(22): 15072-15081, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34709803

RESUMEN

Air pollutant accumulations during wintertime persistent cold air pool (PCAP) events in mountain valleys are of great concern for public health worldwide. Uncertainties associated with the simulated meteorology under stable conditions over complex terrain hinder realistic simulations of air quality using chemical transport models. We use the Community Multiscale Air Quality (CMAQ) model to simulate the gaseous and particulate species for 1 month in January 2011 during the Persistent Cold Air Pool Study (PCAPS) in the Salt Lake Valley (SLV), Utah (USA). Results indicate that the temporal variability associated with the elevated NOx and PM2.5 concentrations during PCAP events was captured by the model (r = 0.20 for NOx and r = 0.49 for PM2.5). However, concentrations were not at the correct magnitude (NMB = -35/12% for PM2.5 during PCAPs/non-PCAPs), where PM2.5 was underestimated during PCAP events and overestimated during non-PCAP periods. The underestimated PCAP strength is represented by valley heat deficit, which contributed to the underestimated PM2.5 concentrations compared with observations due to the model simulating more vertical mixing and less stable stratification than what was observed. Based on the observations, the dominant PM2.5 species were ammonium and nitrate. We provide a discussion that aims to investigate the emissions and chemistry model uncertainties using the nitrogen ratio method and the thermodynamic ammonium nitrate regime method.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Lagos , Material Particulado/análisis , Utah
6.
Bull Am Meteorol Soc ; 0: 1-94, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34446943

RESUMEN

Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area. Gaps in understanding the coupled chemical-meteorological interactions that drive high pollution events make identification of the most effective air-basin specific emission control strategies challenging. To address this, a September 2019 workshop occurred with the goal of planning a future research campaign to investigate air quality in Western U.S. basins. Approximately 120 people participated, representing 50 institutions and 5 countries. Workshop participants outlined the rationale and design for a comprehensive wintertime study that would couple atmospheric chemistry and boundary-layer and complex-terrain meteorology within western U.S. basins. Participants concluded the study should focus on two regions with contrasting aerosol chemistry: three populated valleys within Utah (Salt Lake, Utah, and Cache Valleys) and the San Joaquin Valley in California. This paper describes the scientific rationale for a campaign that will acquire chemical and meteorological datasets using airborne platforms with extensive range, coupled to surface-based measurements focusing on sampling within the near-surface boundary layer, and transport and mixing processes within this layer, with high vertical resolution at a number of representative sites. No prior wintertime basin-focused campaign has provided the breadth of observations necessary to characterize the meteorological-chemical linkages outlined here, nor to validate complex processes within coupled atmosphere-chemistry models.

7.
Environ Health ; 20(1): 47, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33892728

RESUMEN

BACKGROUND: The effect of heatwaves on adverse birth outcomes is not well understood and may vary by how heatwaves are defined. The study aims to examine acute associations between various heatwave definitions and preterm and early-term birth. METHODS: Using national vital records from 50 metropolitan statistical areas (MSAs) between 1982 and 1988, singleton preterm (< 37 weeks) and early-term births (37-38 weeks) were matched (1:1) to controls who completed at least 37 weeks or 39 weeks of gestation, respectively. Matching variables were MSA, maternal race, and maternal education. Sixty heatwave definitions including binary indicators for exposure to sustained heat, number of high heat days, and measures of heat intensity (the average degrees over the threshold in the past 7 days) based on the 97.5th percentile of MSA-specific temperature metrics, or the 85th percentile of positive excessive heat factor (EHF) were created. Odds ratios (OR) for heatwave exposures in the week preceding birth (or corresponding gestational week for controls) were estimated using conditional logistic regression adjusting for maternal age, marital status, and seasonality. Effect modification by maternal education, age, race/ethnicity, child sex, and region was assessed. RESULTS: There were 615,329 preterm and 1,005,576 early-term case-control pairs in the analyses. For most definitions, exposure to heatwaves in the week before delivery was consistently associated with increased odds of early-term birth. Exposure to more high heat days and more degrees above the threshold yielded higher magnitude ORs. For exposure to 3 or more days over the 97.5th percentile of mean temperature in the past week compared to zero days, the OR was 1.027 for early-term birth (95%CI: 1.014, 1.039). Although we generally found null associations when assessing various heatwave definitions and preterm birth, ORs for both preterm and early-term birth were greater in magnitude among Hispanic and non-Hispanic black mothers. CONCLUSION: Although associations varied across metrics and heatwave definitions, heatwaves were more consistently associated with early-term birth than with preterm birth. This study's findings may have implications for prevention programs targeting vulnerable subgroups as climate change progresses.


Asunto(s)
Calor , Nacimiento Prematuro/epidemiología , Adulto , Estudios de Casos y Controles , Ciudades/epidemiología , Femenino , Humanos , Recién Nacido , Masculino , Estados Unidos/epidemiología , Adulto Joven
9.
Environ Int ; 133(Pt A): 105167, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31634664

RESUMEN

We developed a hybrid chemical transport model and receptor model (CTM-RM) to conduct source apportionment of both primary and secondary PM2.5 (particulate matter ≤2.5 µm in diameter) at 36 km resolution throughout the U.S. State of Georgia for the years 2005 and 2007. This novel source apportionment model enabled us to estimate and compare associations of short-term changes in 12 PM2.5 source concentrations (agriculture, biogenic, coal, dust, fuel oil, metals, natural gas, non-road mobile diesel, non-road mobile gasoline, on-road mobile diesel, on-road mobile gasoline, and all other sources) with emergency department (ED) visits for pediatric respiratory diseases. ED visits for asthma (N = 49,651), pneumonia (N = 25,558), and acute upper respiratory infections (acute URI, N = 235,343) among patients aged ≤18 years were obtained from patient claims records. Using a case-crossover study, we estimated odds ratios per interquartile range (IQR) increase for 3-day moving average PM2.5 source concentrations using conditional logistic regression, matching on day-of-week, month, and year, and adjusting for average temperature, humidity, and holidays. We fit both single-source and multi-source models. We observed positive associations between several PM2.5 sources and ED visits for asthma, pneumonia, and acute URI. For example, for asthma, per IQR increase in the source contribution in the single-source model, odds ratios were 1.022 (95% CI: 1.013, 1.031) for dust; 1.050 (95% CI: 1.036, 1.063) for metals, and 1.091 (95% CI: 1.064, 1.119) for natural gas. These sources comprised 5.7%, 2.2%, and 6.3% of total PM2.5 mass, respectively. PM2.5 from metals and natural gas were positively associated with all three respiratory outcomes. In addition, non-road mobile diesel was positively associated with pneumonia and acute URI.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Servicio de Urgencia en Hospital/estadística & datos numéricos , Material Particulado/toxicidad , Trastornos Respiratorios/etiología , Adolescente , Contaminantes Atmosféricos/análisis , Niño , Carbón Mineral , Estudios Cruzados , Polvo , Femenino , Gasolina , Georgia , Humanos , Modelos Logísticos , Masculino , Oportunidad Relativa , Material Particulado/análisis
10.
Environ Res ; 178: 108601, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31465992

RESUMEN

Ambient fine particulate matter less than 2.5 µm in aerodynamic diameter (PM2.5) has been linked to various adverse health outcomes. PM2.5 arises from both natural and anthropogenic sources, and PM2.5 concentrations can vary over space and time. However, the sparsity of existing air quality monitors greatly restricts the spatial-temporal coverage of PM2.5 measurements, potentially limiting the accuracy of PM2.5-related health studies. Various methods exist to address these limitations by supplementing air quality monitoring measurements with additional data. We develop a method to combine PM2.5 estimated from satellite-retrieved aerosol optical depth (AOD) and chemical transport model (CTM) simulations using statistical models. While most previous methods utilize AOD or CTM separately, we aim to leverage advantages offered by both data sources in terms of resolution and coverage using Bayesian ensemble averaging. Our approach differs from previous ensemble approaches in its ability to not only incorporate uncertainties in PM2.5 estimates from individual models but also to provide uncertainties for the resulting ensemble estimates. In an application of estimating daily PM2.5 in the Southeastern US, the ensemble approach outperforms previously developed spatial-temporal statistical models that use either AOD or bias-corrected CTM simulations in cross-validation (CV) analyses. More specifically, in spatially clustered CV experiments, the ensemble approach reduced the AOD-only and CTM-only model's root mean squared error (RMSE) by at least 13%. Similar improvements were seen in R2. The enhanced prediction performance that the ensemble technique provides at fine-scale spatial resolution, as well as the availability of prediction uncertainty, can be further used in health effect analyses of air pollution exposure.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire/estadística & datos numéricos , Monitoreo del Ambiente , Modelos Estadísticos , Material Particulado/análisis , Imágenes Satelitales , Aerosoles , Teorema de Bayes
11.
J Air Waste Manag Assoc ; 69(4): 402-414, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30499749

RESUMEN

Motor vehicles are major sources of fine particulate matter (PM2.5), and the PM2.5 from mobile vehicles is associated with adverse health effects. Traditional methods for estimating source impacts that employ receptor models are limited by the availability of observational data. To better estimate temporally and spatially resolved mobile source impacts on PM2.5, we developed an approach based on a method that uses elemental carbon (EC), carbon monoxide (CO), and nitrogen oxide (NOx) measurements as an indicator of mobile source impacts. We extended the original integrated mobile source indicator (IMSI) method in three aspects. First, we generated spatially resolved indicators using 24-hr average concentrations of EC, CO, and NOx estimated at 4 km resolution by applying a method developed to fuse chemical transport model (Community Multiscale Air Quality Model [CMAQ]) simulations and observations. Second, we used spatially resolved emissions instead of county-level emissions in the IMSI formulation. Third, we spatially calibrated the unitless indicators to annually-averaged mobile source impacts estimated by the receptor model Chemical Mass Balance (CMB). Daily total mobile source impacts on PM2.5, as well as separate gasoline and diesel vehicle impacts, were estimated at 12 km resolution from 2002 to 2008 and 4 km resolution from 2008 to 2010 for Georgia. The total mobile and separate vehicle source impacts compared well with daily CMB results, with high temporal correlation (e.g., R ranges from 0.59 to 0.88 for total mobile sources with 4 km resolution at nine locations). The total mobile source impacts had higher correlation and lower error than the separate gasoline and diesel sources when compared with observation-based CMB estimates. Overall, the enhanced approach provides spatially resolved mobile source impacts that are similar to observation-based estimates and can be used to improve assessment of health effects. Implications: An approach is developed based on an integrated mobile source indicator method to estimate spatiotemporal PM2.5 mobile source impacts. The approach employs three air pollutant concentration fields that are readily simulated at 4 and 12 km resolutions, and is calibrated using PM2.5 source apportionment modeling results to generate daily mobile source impacts in the state of Georgia. The estimated source impacts can be used in investigations of traffic pollution and health.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Emisiones de Vehículos/análisis , Georgia , Vehículos a Motor
12.
Sensors (Basel) ; 18(10)2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30336609

RESUMEN

Bright surfaces across the western U.S. lead to uncertainties in satellite derived aerosol optical depth (AOD) where AOD is typically overestimated. With this in mind, a compact and portable instrument was developed to measure surface albedo on an unmanned aircraft system (UAS). This spectral albedometer uses two Hamamatsu micro-spectrometers (range: 340⁻780 nm) for measuring incident and reflected solar radiation at the surface. The instrument was deployed on 5 October 2017 in Nevada's Black Rock Desert (BRD) to investigate a region of known high surface reflectance for comparison with albedo products from satellites. It was found that satellite retrievals underestimate surface reflectance compared to the UAS mounted albedometer. To highlight the importance of surface reflectance on the AOD from satellite retrieval algorithms, a 1-D radiative transfer model was used. The simple model was used to determine the sensitivity of AOD with respect to the change in albedo and indicates a large sensitivity of AOD retrievals to surface reflectance for certain combinations of surface albedo and aerosol optical properties. This demonstrates the need to increase the number of surface albedo measurements and an intensive evaluation of albedo satellite retrievals to improve satellite-derived AOD. The portable instrument is suitable for other applications as well.

13.
Artículo en Inglés | MEDLINE | ID: mdl-28617349

RESUMEN

The use of solid biomass fuels in cookstoves has been associated with chronic health impacts that disproportionately affect women worldwide. Solid fuel stoves that use wood, plant matter, and cow dung are commonly used for household cooking in rural Bangladesh. This study investigates the immediate effects of acute elevated cookstove emission exposures on pulmonary function. Pulmonary function was measured with spirometry before and during cooking to assess changes in respiratory function during exposure to cookstove emissions for 15 females ages 18-65. Cookstove emissions were characterized using continuous measurements of particulate matter (PM2.5-aerodynamic diameter <2.5 µm) concentrations at a 1 s time resolution for each household. Several case studies were observed where women ≥40 years who had been cooking for ≥25 years suffered from severe pulmonary impairment. Forced expiratory volume in one second over forced vital capacity (FEV1/FVC) was found to moderately decline (p = 0.06) during cooking versus non-cooking in the study cohort. The study found a significant (α < 0.05) negative association between 3- and 10-min maximum PM2.5 emissions during cooking and lung function measurements of forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and FEV1/FVC obtained during cooking intervals. This study found that exposure to biomass burning emissions from solid fuel stoves- associated with acute elevated PM2.5 concentrations- leads to a decrease in pulmonary function, although further research is needed to ascertain the prolonged (e.g., daily, for multiple years) impacts of acute PM2.5 exposure on immediate and sustained respiratory impairment.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire Interior/efectos adversos , Pulmón/fisiopatología , Material Particulado/efectos adversos , Adulto , Bangladesh , Biomasa , Culinaria , Femenino , Volumen Espiratorio Forzado , Humanos , Pulmón/efectos de los fármacos , Persona de Mediana Edad , Tamaño de la Partícula , Población Rural , Capacidad Vital
14.
Environ Sci Technol ; 50(22): 12225-12231, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27801579

RESUMEN

The spatial distribution of chemical compounds and concentration of reactive mercury (RM), defined as the sum of gaseous oxidized mercury (GOM) and <3 µm particulate bound mercury (PBM), are poorly characterized. The objective of this study was to understand the chemistry, concentration, and spatial and temporal distribution of GOM at adjacent locations (12 km apart) with a difference in elevation of ∼1000 m. Atmospheric GOM measurements were made with passive and active samplers using membranes, and at one location, a Tekran mercury measurement system was used. The chemistry of GOM varied across time and location. On the basis of data collected, chemistry at the low elevation site adjacent to a highway was primarily influenced by pollutants generated by mobile sources (GOM = nitrogen and sulfur-based compounds), and the high elevation site (GOM = halogen-based compounds) was affected by long-range transport in the free troposphere over the marine boundary layer into Nevada. Data collected at these two locations demonstrate that different GOM compounds exist depending on the oxidants present in the air. Measurements of GOM made by the KCl denuder in the Tekran instrument located at the low elevation site were lower than that measured using membranes by 1.7-13 times. Accurate measurements of atmospheric concentrations and chemistry of RM are necessary for proper assessment of environmental impacts, and field measurements are essential for atmospheric models, which in turn influence policy decisions.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente/instrumentación , Atmósfera/química , Mercurio , Compuestos de Mercurio
15.
Environ Sci Technol ; 50(7): 3695-705, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26923334

RESUMEN

Investigations of ambient air pollution health effects rely on complete and accurate spatiotemporal air pollutant estimates. Three methods are developed for fusing ambient monitor measurements and 12 km resolution chemical transport model (CMAQ) simulations to estimate daily air pollutant concentrations across Georgia. Temporal variance is determined by observations in one method, with the annual mean CMAQ field providing spatial structure. A second method involves scaling daily CMAQ simulated fields using mean observations to reduce bias. Finally, a weighted average of these results based on prediction of temporal variance provides optimized daily estimates for each 12 × 12 km grid. These methods were applied to daily metrics of 12 pollutants (CO, NO2, NOx, O3, SO2, PM10, PM2.5, and five PM2.5 components) over the state of Georgia for a seven-year period (2002-2008). Cross-validation demonstrates a wide range in optimized model performance across pollutants, with SO2 predicted most poorly due to limitations in coal combustion plume monitoring and modeling. For the other pollutants studied, 54-88% of the spatiotemporal variance (Pearson R(2) from cross-validation) was captured, with ozone and PM2.5 predicted best. The optimized fusion approach developed provides daily spatial field estimates of air pollutant concentrations and uncertainties that are consistent with observations, emissions, and meteorology.


Asunto(s)
Contaminantes Atmosféricos/análisis , Modelos Teóricos , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Georgia , Óxidos de Nitrógeno/análisis , Ozono/análisis , Material Particulado/análisis , Reproducibilidad de los Resultados , Análisis Espacio-Temporal
16.
Environ Health Perspect ; 124(6): 875-80, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26485731

RESUMEN

BACKGROUND: Previous epidemiologic studies suggest associations between preterm birth and ambient air pollution. OBJECTIVE: We investigated associations between 11 ambient air pollutants, estimated by combining Community Multiscale Air Quality model (CMAQ) simulations with measurements from stationary monitors, and risk of preterm birth (< 37 weeks of gestation) in the U.S. state of Georgia. METHODS: Birth records for singleton births ≥ 27 weeks of gestation with complete covariate information and estimated dates of conception between 1 January 2002 and 28 February 2006 were obtained from the Office of Health Indicators for Planning, Georgia Department of Public Health (n = 511,658 births). Daily pollutant concentrations at 12-km resolution were estimated for 11 ambient air pollutants. We used logistic regression with county-level fixed effects to estimate associations between preterm birth and average pollutant concentrations during the first and second trimester. Discrete-time survival models were used to estimate third-trimester and total pregnancy associations. Effect modification was investigated by maternal education, race, census tract poverty level, and county-level urbanicity. RESULTS: Trimester-specific and total pregnancy associations (p < 0.05) were observed for several pollutants. All the traffic-related pollutants (carbon monoxide, nitrogen dioxide, PM2.5 elemental carbon) were associated with preterm birth [e.g., odds ratios for interquartile range increases in carbon monoxide during the first, second, and third trimesters and total pregnancy were 1.005 (95% CI: 1.001, 1.009), 1.007 (95% CI: 1.002, 1.011), 1.010 (95% CI: 1.006, 1.014), and 1.011 (95% CI: 1.006, 1.017)]. Associations tended to be higher for mothers with low educational attainment and African American mothers. CONCLUSION: Several ambient air pollutants were associated with preterm birth; associations were observed in all exposure windows. CITATION: Hao H, Chang HH, Holmes HA, Mulholland JA, Klein M, Darrow LA, Strickland MJ. 2016. Air pollution and preterm birth in the U.S. state of Georgia (2002-2006): associations with concentrations of 11 ambient air pollutants estimated by combining Community Multiscale Air Quality Model (CMAQ) simulations with stationary monitor measurements. Environ Health Perspect 124:875-880; http://dx.doi.org/10.1289/ehp.1409651.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Monitoreo del Ambiente , Exposición Materna/estadística & datos numéricos , Nacimiento Prematuro/epidemiología , Monóxido de Carbono , Femenino , Georgia/epidemiología , Humanos , Modelos Logísticos , Dióxido de Nitrógeno , Oportunidad Relativa , Embarazo
17.
Environ Sci Technol ; 49(22): 13206-14, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26451471

RESUMEN

Cold air pools (CAPs) are stagnant stable air masses that form in valleys and basins in the winter. Low wintertime insolation limits convective mixing, such that pollutant concentrations can build up within the CAP when pollutant sources are present. In the western United States, wintertime CAPs often persist for days or weeks. Atmospheric models do not adequately capture the strength and evolution of CAPs. This is in part due to the limited availability of data quantifying the local turbulence during the formation, maintenance, and destruction of persistent CAPs. This paper presents observational data to quantify the turbulent mixing during two CAP episodes in Utah's Salt Lake Valley during February of 2004. Particulate matter (PM) concentration data and turbulence measurements for CAP and non-CAP time periods indicate that two distinct types of mixing scenarios occur depending on whether the CAP is dry or cloudy. Where cloudy, CAPs have enhanced vertical mixing due to top-down convection from the cloud layer. A comparison between the heat and momentum fluxes during 5 days of a dry CAP episode in February to those of an equivalent 5 day time period in March with no CAP indicates that the average turbulent kinetic energy during the CAP was suppressed by approximately 80%.


Asunto(s)
Contaminación del Aire/análisis , Aire , Contaminantes Atmosféricos/análisis , Modelos Teóricos , Material Particulado/análisis , Estaciones del Año , Utah , Tiempo (Meteorología)
18.
J Air Waste Manag Assoc ; 64(7): 759-73, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25122950

RESUMEN

This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States-Mexico border During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14-30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 microg m(-3) and biomass stoves 163 to 504 microg m(-1). Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 microg m(-3)). The former is evident in the median and range of daytime PM values (median PM3: 250 microg m(-3), maximum: 9411 microg m(-3)), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 microg m(-3), maximum: 10,846 microg m(-3)). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 microg m(-3)). Implications: Regulatory air quality standards are based on outdoor ambient air measurements. However, a large fraction of time is typically spent indoors where a variety of activities including cooking, heating, tobacco smoking, and cleaning can lead to elevated PM concentrations. This study investigates the influence of meteorology, outdoor PM, and indoor activities on indoor air pollution (IAP) levels in the United States-Mexico border region. Results indicate that cooking fuel type and meteorology greatly influence the IAP in homes, with biomass fuel use causing the largest increase in PM concentration.


Asunto(s)
Contaminantes Atmosféricos/química , Contaminación del Aire Interior/análisis , Vivienda , Material Particulado/química , Atmósfera , Biomasa , Culinaria , Monitoreo del Ambiente/métodos , Incendios , México , Tamaño de la Partícula , Características de la Residencia , Factores de Tiempo
19.
Environ Sci Technol ; 47(23): 13511-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24087907

RESUMEN

A Bayesian source apportionment (SA) method is developed to provide source impact estimates and associated uncertainties. Bayesian-based ensemble averaging of multiple models provides new source profiles for use in a chemical mass balance (CMB) SA of fine particulate matter (PM2.5). The approach estimates source impacts and their uncertainties by using a short-term application of four individual SA methods: three receptor-based models and one chemical transport model. The method is used to estimate two seasonal distributions of source profiles that are used in SA for a long-term PM2.5 data set. For each day in a long-term PM2.5 data set, 10 source profiles are sampled from these distributions and used in a CMB application, resulting in 10 SA results for each day. This formulation results in a distribution of daily source impacts rather than a single value. The average and standard deviation of the distribution are used as the final estimate of source impact and a measure of uncertainty, respectively. The Bayesian-based source impacts for biomass burning correlate better with observed levoglucosan (R(2) = 0.66) and water-soluble potassium (R(2) = 0.63) than source impacts estimated using more traditional methods and more closely agrees with observed total mass. The Bayesian approach also captures the expected seasonal variation of biomass burning and secondary impacts and results in fewer days with sources having zero impact. Sensitivity analysis found that using non-informative prior weighting performed better than using weighting based on method-derived uncertainties. This approach can be applied to long-term data sets from speciation network sites of the United States Environmental Protection Agency (U.S. EPA). In addition to providing results that are more consistent with independent observations and known emission sources being present, the distributions of source impacts can be used in epidemiologic analyses to estimate uncertainties associated with the SA results.


Asunto(s)
Modelos Químicos , Modelos Teóricos , Material Particulado/análisis , Teorema de Bayes , Biomasa , Análisis Factorial , Glucosa/análogos & derivados , Glucosa/análisis , Tamaño de la Partícula , Potasio/análisis , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...