Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Radiology ; 311(3): e231598, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38916502

RESUMEN

Background Photon-counting CT (PCCT) represents a recent advancement in CT, offering improved spatial resolution and spectral separability. By using multiple adjustable energy bins, PCCT enables K-edge imaging, allowing mixed contrast agent distinction. Deep-silicon is a new type of photon-counting detector with different characteristics compared with cadmium photon-counting detectors. Purpose To evaluate the performance of a prototype deep-Si PCCT scanner and compare it with that of a state-of-the-art dual-energy energy-integrating detector (EID) scanner in imaging coronary artery plaques enhanced with iodine and K-edge contrast agents. Materials and Methods A series of 10 three-dimensional-printed inserts (diameter, 3.5 mm) was prepared, and materials mimicking soft and calcified plaques were added to simulate stenosed coronary arteries. Inserts filled with an iodine- or gadolinium-based contrast agent (GBCA) were scanned. Virtual monoenergetic images (VMIs) and iodine maps were generated using two- and eight-energy bin data from EID CT and PCCT, respectively. Gadolinium maps were calculated for PCCT. The CT numbers of VMIs and iodine maps were compared. Spatial resolution and blooming artifacts were compared on the 70-keV VMIs in plaque-free and calcified coronary arteries. Results No evidence of a significant difference in the CT number of 70-keV images was found except in inserts containing GBCAs. In the absence of a GBCA, excellent (r > 0.99) agreement for iodine was found. PCCT could quantify the GBCA within 0.2 mg Gd/mL ± 0.8 accuracy of the ground truth, whereas EID CT failed to detect the GBCA. Lumen measurements were more accurate for PCCT than for EID CT, with mean errors of 167 versus 442 µm (P < .001) compared with the 3.5-mm ground truth. Conclusion Deep-Si PCCT demonstrated good accuracy in iodine quantification and could accurately decompose mixtures of two contrast agents. Its improved spatial resolution resulted in sharper images with blooming artifacts reduced by 50% compared with a state-of-the-art dual-energy EID CT scanner. © RSNA, 2024.


Asunto(s)
Medios de Contraste , Fantasmas de Imagen , Fotones , Humanos , Tomografía Computarizada por Rayos X/métodos , Vasos Coronarios/diagnóstico por imagen , Silicio , Diseño de Equipo
2.
ArXiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38351941

RESUMEN

Contained within this volume are the scholarly contributions presented in both oral and poster formats at Fully3D 2023: The 17th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine. This conference convened from July 16-21, 2023, at Stony Brook University in New York. For ease of reference, all papers are organized alphabetically according to the last names of the primary authors. Our heartfelt appreciation goes out to all participants who took the time to submit, present, and revise their work for inclusion in these proceedings. Collectively, we would also like to express our profound gratitude to our generous sponsors, detailed in subsequent pages, who have played an instrumental role in offering awards and facilitating the various conference activities. Additionally, our thanks extend to the diligent reporter who collated invaluable feedback from attendees, which can be found in the pages that follow. September 7, 2023 Fully3D 2023 Co-Chairs: Jerome Liang, Paul Vaska, and Chuan Huang.

3.
Eur Radiol Exp ; 8(1): 4, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172486

RESUMEN

Recent advancements in diagnostic CT detector technology have made it possible to resolve anatomical features smaller than 20 LP/cm, referred to as ultra-high-resolution (UHR) CT. Subtle biological motions that did not affect standard-resolution (SR) CT may not be neglected in UHR. This study aimed to quantify the cardiac-induced motion of the pancreas and simulate its impact on the image quality of UHR-CT. We measured the displacement of the head of the pancreas in three healthy volunteers using Displacement Encoding with Stimulated Echoes (DENSE) MRI. The results were used to simulate SR- and UHR-CT acquisitions affected by pancreatic motion.We found pancreatic displacement in the 0.24-1.59 mm range during one cardiac cycle across the subjects. The greatest displacement was observed in the anterior-posterior direction. The time to peak displacement varied across subjects. Both SR and UHR images showed reduced image quality, as measured by radial modulation transfer function, due to cardiac-induced motion, but the motion artifacts caused more severe degradation in UHR acquisitions. Our investigation of cardiac-induced pancreatic displacement reveals its potential to degrade both standard and UHR-CT scans. To fully utilize the improvement in spatial resolution offered by UHR-CT, the effects of cardiac-induced motion in the abdomen need to be understood and corrected.Relevance statement Advancements in CT detector technology have enhanced CT scanner spatial resolution to approximately 100 µm. Consequently, previously ignored biological motions such as the cardiac-induced motion of the pancreas now demand attention to fully utilize this improved resolution.


Asunto(s)
Cavidad Abdominal , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Tomógrafos Computarizados por Rayos X , Movimiento (Física) , Páncreas/diagnóstico por imagen
4.
J Cardiovasc Comput Tomogr ; 17(5): 341-344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37567802

RESUMEN

BACKGROUND: Recent improvements in CT detector technology have led to smaller detector pixels resolving frequencies beyond 20 lp/cm and enabled ultra-high-resolution CT. Silicon-based photon-counting detector (PCD) CT is one such technology that promises improved spatial and spectral resolution. However, when the detector pixel sizes are reduced, the impact of cardiac motion on CT images becomes more pronounced. Here, we investigated the effects cardiac motion on the image quality of a clinical prototype Si-PCD scanner in a dynamic heart phantom. METHODS: A series of 3D-printed vessels were created to simulate coronary arteries with diameter in the 1-3.5 â€‹mm range. Four coronary stents were set inside the d â€‹= â€‹3.5 â€‹mm vessels and all vessels were filled with contrast agents and were placed inside a dynamic cardiac phantom. The phantom was scanned in motion (60 bpm) and at rest on a prototype clinical Si-PCD CT scanner in 8-bin spectral UHR mode. Virtual monoenergetic images (VMI) were generated at 70 â€‹keV and CT number accuracy and effective spatial resolution (blooming) of rest and motion VMIs were compared. RESULTS: Linear regression analysis of CT numbers showed excellent agreement (r â€‹> â€‹0.99) between rest and motion. We did not observe a significant difference (p â€‹> â€‹0.48) in estimating free lumen diameters. Differences in in-stent lumen diameter and stent strut thickness were non-significant with maximum mean difference of approximately 70 â€‹µm. CONCLUSION: We found no significant degradation in CT number accuracy or spatial resolution due to cardiac motion. The results demonstrate the potential of spectral UHR coronary CT angiography enabled by Si-PCD.


Asunto(s)
Angiografía por Tomografía Computarizada , Silicio , Humanos , Angiografía por Tomografía Computarizada/métodos , Valor Predictivo de las Pruebas , Tomografía Computarizada por Rayos X/métodos , Angiografía Coronaria/métodos , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA