Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Hear Res ; 437: 108856, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37531847

RESUMEN

The relative contributions of superior temporal vs. inferior frontal and parietal networks to recognition of speech in a background of competing speech remain unclear, although the contributions themselves are well established. Here, we use fMRI with spectrotemporal modulation transfer function (ST-MTF) modeling to examine the speech information represented in temporal vs. frontoparietal networks for two speech recognition tasks with and without a competing talker. Specifically, 31 listeners completed two versions of a three-alternative forced choice competing speech task: "Unison" and "Competing", in which a female (target) and a male (competing) talker uttered identical or different phrases, respectively. Spectrotemporal modulation filtering (i.e., acoustic distortion) was applied to the two-talker mixtures and ST-MTF models were generated to predict brain activation from differences in spectrotemporal-modulation distortion on each trial. Three cortical networks were identified based on differential patterns of ST-MTF predictions and the resultant ST-MTF weights across conditions (Unison, Competing): a bilateral superior temporal (S-T) network, a frontoparietal (F-P) network, and a network distributed across cortical midline regions and the angular gyrus (M-AG). The S-T network and the M-AG network responded primarily to spectrotemporal cues associated with speech intelligibility, regardless of condition, but the S-T network responded to a greater range of temporal modulations suggesting a more acoustically driven response. The F-P network responded to the absence of intelligibility-related cues in both conditions, but also to the absence (presence) of target-talker (competing-talker) vocal pitch in the Competing condition, suggesting a generalized response to signal degradation. Task performance was best predicted by activation in the S-T and F-P networks, but in opposite directions (S-T: more activation = better performance; F-P: vice versa). Moreover, S-T network predictions were entirely ST-MTF mediated while F-P network predictions were ST-MTF mediated only in the Unison condition, suggesting an influence from non-acoustic sources (e.g., informational masking) in the Competing condition. Activation in the M-AG network was weakly positively correlated with performance and this relation was entirely superseded by those in the S-T and F-P networks. Regarding contributions to speech recognition, we conclude: (a) superior temporal regions play a bottom-up, perceptual role that is not qualitatively dependent on the presence of competing speech; (b) frontoparietal regions play a top-down role that is modulated by competing speech and scales with listening effort; and (c) performance ultimately relies on dynamic interactions between these networks, with ancillary contributions from networks not involved in speech processing per se (e.g., the M-AG network).


Asunto(s)
Percepción del Habla , Habla , Masculino , Humanos , Femenino , Percepción del Habla/fisiología , Cognición , Señales (Psicología) , Acústica , Inteligibilidad del Habla , Enmascaramiento Perceptual/fisiología
2.
Metabolites ; 13(7)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37512485

RESUMEN

The prognostic ability of global white matter and gray matter metabolite ratios following pediatric traumatic brain injury (TBI) and their relationship to 12-month neuropsychological assessments of intelligence quotient (IQ), attention, and memory is presented. Three-dimensional proton magnetic resonance spectroscopic imaging (MRSI) in pediatric subjects with complicated mild (cMild), moderate, and severe TBI was acquired acutely (6-18 days) and 12 months post-injury and compared to age-matched typically developing adolescents. A global linear regression model, co-registering MRSI metabolite maps with 3D high-resolution magnetic resonance images, was used to identify longitudinal white matter and gray matter metabolite ratio changes. Acutely, gray matter NAA/Cr, white matter NAA/Cr, and white matter NAA/Cho ratios were significantly lower in TBI groups compared to controls. Gray matter NAA/Cho was reduced only in the severe TBI group. At 12 months, all metabolite ratios normalized to control levels in each of the TBI groups. Acute gray matter and white matter NAA ratios were significantly correlated to 12-month assessments of IQ, attention, and memory. These findings suggest that whole brain gray matter and white matter metabolite ratios reflect longitudinal changes in neuronal metabolism following TBI, which can be used to predict neuropsychological outcomes in pediatric subjects.

3.
J Cogn Neurosci ; 34(11): 2189-2214, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007073

RESUMEN

It has long been known that listening to speech activates inferior frontal (pre-)motor regions in addition to a more dorsal premotor site (dPM). Recent work shows that dPM, located adjacent to laryngeal motor cortex, responds to low-level acoustic speech cues including vocal pitch, and the speech envelope, in addition to higher-level cues such as phoneme categories. An emerging hypothesis is that dPM is part of a general auditory-guided laryngeal control circuit that plays a role in producing speech and other voluntary auditory-vocal behaviors. We recently reported a study in which dPM responded to vocal pitch during a degraded speech recognition task, but only when speech was rated as unintelligible; dPM was more robustly modulated by the categorical difference between intelligible and unintelligible speech. Contrary to the general auditory-vocal hypothesis, this suggests intelligible speech is the primary driver of dPM. However, the same pattern of results was observed in pitch-sensitive auditory cortex. Crucially, vocal pitch was not relevant to the intelligibility judgment task, which may have facilitated processing of phonetic information at the expense of vocal pitch cues. The present fMRI study (n = 25) tests the hypothesis that, for a multitalker task that emphasizes pitch for talker segregation, left dPM and pitch-sensitive auditory regions will respond to vocal pitch regardless of overall speech intelligibility. This would suggest that pitch processing is indeed a primary concern of this circuit, apparent during perception only when the task demands it. Spectrotemporal modulation distortion was used to independently modulate vocal pitch and phonetic content in two-talker (male/female) utterances across two conditions (Competing, Unison), only one of which required pitch-based segregation (Competing). A Bayesian hierarchical drift-diffusion model was used to predict speech recognition performance from patterns of spectrotemporal distortion imposed on each trial. The model's drift rate parameter, a d'-like measure of performance, was strongly associated with vocal pitch for Competing but not Unison. Using a second Bayesian hierarchical model, we identified regions where behaviorally relevant acoustic features were related to fMRI activation in dPM. We regressed the hierarchical drift-diffusion model's posterior predictions of trial-wise drift rate, reflecting the relative presence or absence of behaviorally relevant acoustic features from trial to trial, against trial-wise activation amplitude. A significant positive association with overall drift rate, reflecting vocal pitch and phonetic cues related to overall intelligibility, was observed in left dPM and bilateral auditory cortex in both conditions. A significant positive association with "pitch-restricted" drift rate, reflecting only the relative presence or absence of behaviorally relevant pitch cues, regardless of the presence or absence of phonetic content (intelligibility), was observed in left dPM, but only in the Competing condition. Interestingly, the same effect was observed in bilateral auditory cortex but in both conditions. A post hoc mediation analysis ruled out the possibility that decision load was responsible for the observed pitch effects. These findings suggest that processing of vocal pitch is a primary concern of the auditory-cortex-dPM circuit, although during perception core pitch, processing is carried out by auditory cortex with a potential modulatory influence from dPM.


Asunto(s)
Corteza Auditiva , Corteza Motora , Percepción del Habla , Estimulación Acústica/métodos , Corteza Auditiva/diagnóstico por imagen , Corteza Auditiva/fisiología , Teorema de Bayes , Femenino , Humanos , Masculino , Percepción de la Altura Tonal/fisiología , Habla/fisiología , Percepción del Habla/fisiología
4.
PLoS One ; 17(5): e0268282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35544542

RESUMEN

BACKGROUND: There is evidence from various models of hypoxic-ischemic injury (HII) that nitric oxide (NO) is protective. We hypothesized that either inhaled NO (iNO) or nitrite would alleviate brain injury in neonatal HII via modulation of mitochondrial function. METHODS: We tested the effects of iNO and nitrite on the Rice-Vannucci model of HII in 7-day-old rats. Brain mitochondria were isolated for flow cytometry, aconitase activity, electron paramagnetic resonance, and Seahorse assays. RESULTS: Pretreatment of pups with iNO decreased survival in the Rice-Vannucci model of HII, while iNO administered post-insult did not. MRI analysis demonstrated that pre-HII iNO at 40 ppm and post-HII iNO at 20 ppm decreased the brain lesion sizes from 6.3±1.3% to 1.0±0.4% and 1.8±0.8%, respectively. Intraperitoneal nitrite at 0.165 µg/g improved neurobehavioral performance but was harmful at higher doses and had no effect on brain infarct size. NO reacted with complex IV at the heme a3 site, decreased the oxidative stress of mitochondria challenged with anoxia and reoxygenation, and suppressed mitochondrial oxygen respiration. CONCLUSIONS: This study suggests that iNO administered following neonatal HII may be neuroprotective, possibly via its modulation of mitochondrial function.


Asunto(s)
Óxido Nítrico , Nitritos , Administración por Inhalación , Animales , Animales Recién Nacidos , Hipoxia , Ratas
5.
J Neurotrauma ; 38(1): 111-121, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32515269

RESUMEN

This study is unique in that it examines the evolution of white matter injury very early and at 12 months post-injury in pediatric patients following traumatic brain injury (TBI). Diffusion tensor imaging (DTI) was acquired at two time-points: acutely at 6-17 days and 12 months following a complicated mild (cMild)/moderate (mod) or severe TBI. Regional measures of anisotropy and diffusivity were compared between TBI groups and against a group of age-matched healthy controls and used to predict performance on measures of attention, memory, and intellectual functioning at 12-months post-injury. Analysis of the acute DTI data using tract based spatial statistics revealed a small number of regional decreases in fractional anisotropy (FA) in both the cMild/mod and severe TBI groups compared with controls. These changes were observed in the occipital white matter, anterior limb of the internal capsule (ALIC)/basal ganglia, and corpus callosum. The severe TBI group showed regional differences in axial diffusivity (AD) in the brainstem and corpus callosum that were not seen in the cMild/mod TBI group. By 12-months, widespread decreases in FA and increases in apparent diffusion coefficient (ADC) and radial diffusivity (RD) were observed in both TBI groups compared with controls, with the overall number of regions with abnormal DTI metrics increasing over time. The early changes in regional DTI metrics were associated with 12-month performance IQ scores. These findings suggest that there may be regional differences in the brain's reparative processes or that mechanisms associated with the brain's plasticity to recover may also be region based.


Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Sustancia Blanca/lesiones , Adolescente , Niño , Preescolar , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Sustancia Blanca/diagnóstico por imagen
6.
Brain Imaging Behav ; 15(2): 504-525, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32797399

RESUMEN

Proton (1H) magnetic resonance spectroscopy provides a non-invasive and quantitative measure of brain metabolites. Traumatic brain injury impacts cerebral metabolism and a number of research groups have successfully used this technique as a biomarker of injury and/or outcome in both pediatric and adult TBI populations. However, this technique is underutilized, with studies being performed primarily at centers with access to MR research support. In this paper we present a technical introduction to the acquisition and analysis of in vivo 1H magnetic resonance spectroscopy and review 1H magnetic resonance spectroscopy findings in different injury populations. In addition, we propose a basic 1H magnetic resonance spectroscopy data acquisition scheme (Supplemental Information) that can be added to any imaging protocol, regardless of clinical magnetic resonance platform. We outline a number of considerations for study design as a way of encouraging the use of 1H magnetic resonance spectroscopy in the study of traumatic brain injury, as well as recommendations to improve data harmonization across groups already using this technique.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Adulto , Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Niño , Humanos , Espectroscopía de Resonancia Magnética , Espectroscopía de Protones por Resonancia Magnética
7.
Front Mol Neurosci ; 13: 109, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670020

RESUMEN

Aim: Traumatic brain injury (TBI) is a leading cause of mortality/morbidity and is associated with chronic neuroinflammation. Melanocortin receptor agonists including adrenocorticotropic hormone (ACTH) ameliorate inflammation and provide a novel therapeutic approach. We examined the effect of long-acting cosyntropin (CoSyn), a synthetic ACTH analog, on the early inflammatory response and functional outcome following experimental TBI. Methods: The controlled cortical impact model was used to induce TBI in mice. Mice were assigned to injury and treatment protocols resulting in four experimental groups including sham + saline, sham + CoSyn, TBI + saline, and TBI + CoSyn. Treatment was administered subcutaneously 3 h post-injury and daily injections were given for up to 7 days post-injury. The early inflammatory response was evaluated at 3 days post-injury through the evaluation of cytokine expression (IL1ß and TNFα) and immune cell response. Quantification of immune cell response included cell counts of microglia/macrophages (Iba1+ cells) and neutrophils (MPO+ cells) in the cortex and hippocampus. Behavioral testing (n = 10-14 animals/group) included open field (OF) and novel object recognition (NOR) during the first week following injury and Morris water maze (MWM) at 10-15 days post-injury. Results: Immune cell quantification showed decreased accumulation of Iba1+ cells in the perilesional cortex and CA1 region of the hippocampus for CoSyn-treated TBI animals compared to saline-treated. Reduced numbers of MPO+ cells were also found in the perilesional cortex and hippocampus in CoSyn treated TBI mice compared to their saline-treated counterparts. Furthermore, CoSyn treatment reduced IL1ß expression in the cortex of TBI mice. Behavioral testing showed a treatment effect of CoSyn for NOR with CoSyn increasing the discrimination ratio in both TBI and Sham groups, indicating increased memory performance. CoSyn also decreased latency to find platform during the early training period of the MWM when comparing CoSyn to saline-treated TBI mice suggesting moderate improvements in spatial memory following CoSyn treatment. Conclusion: Reduced microglia/macrophage accumulation and neutrophil infiltration in conjunction with moderate improvements in spatial learning in our CoSyn treated TBI mice suggests a beneficial anti-inflammatory effect of CoSyn following TBI.

8.
J Neurotrauma ; 36(8): 1352-1360, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30351247

RESUMEN

The aims of this study were to evaluate longitudinal metabolite changes in traumatic brain injury (TBI) subjects and determine whether early magnetic resonance spectroscopic imaging (MRSI) changes in discrete brain regions predict 1-year neuropsychological outcomes. Three-dimensional (3D) proton MRSI was performed in pediatric subjects with complicated mild (cMild), moderate, and severe injury, acutely (6-17 days) and 1-year post-injury along with neurological and cognitive testing. Longitudinal analysis found that in the cMild/Moderate group, all MRSI ratios from 12 regions returned to control levels at 1 year. In the severe group, only cortical gray matter regions fully recovered to control levels whereas N-acetylaspartate (NAA) ratios from the hemispheric white matter and subcortical regions remained statistically different from controls. A factor analysis reduced the data to two loading factors that significantly differentiated between TBI groups; one included acute regional NAA variables and another consisted of clinically observed variables (e.g., days in coma). Using scores calculated from the two loading factors in a logistic regression model, we found that the percent accuracy for classification of TBI groups was greatest for the dichotomized attention measure (93%), followed by Full Scale Intelligence Quotient at 91%, and the combined memory Z-score measure (90%). Using the acute basal ganglia NAA/creatine (Cr) ratio alone achieved a higher percent accuracy of 94.7% for the attention measure whereas the acute thalamic NAA/Cr ratio alone achieved a higher percent accuracy of 91.9% for the memory measure. These results support the conclusions that reduced NAA is an early indicator of tissue injury and that measurements from subcortical brain regions are more predictive of long-term cognitive outcome.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Recuperación de la Función , Adolescente , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análisis , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/patología , Niño , Preescolar , Creatina/análisis , Creatina/metabolismo , Femenino , Humanos , Estudios Longitudinales , Espectroscopía de Resonancia Magnética , Masculino , Recuperación de la Función/fisiología
9.
JAMA Pediatr ; 172(11): e182853, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30193284

RESUMEN

Importance: Mild traumatic brain injury (mTBI), or concussion, in children is a rapidly growing public health concern because epidemiologic data indicate a marked increase in the number of emergency department visits for mTBI over the past decade. However, no evidence-based clinical guidelines have been developed to date for diagnosing and managing pediatric mTBI in the United States. Objective: To provide a guideline based on a previous systematic review of the literature to obtain and assess evidence toward developing clinical recommendations for health care professionals related to the diagnosis, prognosis, and management/treatment of pediatric mTBI. Evidence Review: The Centers for Disease Control and Prevention (CDC) National Center for Injury Prevention and Control Board of Scientific Counselors, a federal advisory committee, established the Pediatric Mild Traumatic Brain Injury Guideline Workgroup. The workgroup drafted recommendations based on the evidence that was obtained and assessed within the systematic review, as well as related evidence, scientific principles, and expert inference. This information includes selected studies published since the evidence review was conducted that were deemed by the workgroup to be relevant to the recommendations. The dates of the initial literature search were January 1, 1990, to November 30, 2012, and the dates of the updated literature search were December 1, 2012, to July 31, 2015. Findings: The CDC guideline includes 19 sets of recommendations on the diagnosis, prognosis, and management/treatment of pediatric mTBI that were assigned a level of obligation (ie, must, should, or may) based on confidence in the evidence. Recommendations address imaging, symptom scales, cognitive testing, and standardized assessment for diagnosis; history and risk factor assessment, monitoring, and counseling for prognosis; and patient/family education, rest, support, return to school, and symptom management for treatment. Conclusions and Relevance: This guideline identifies the best practices for mTBI based on the current evidence; updates should be made as the body of evidence grows. In addition to the development of the guideline, CDC has created user-friendly guideline implementation materials that are concise and actionable. Evaluation of the guideline and implementation materials is crucial in understanding the influence of the recommendations.


Asunto(s)
Conmoción Encefálica/diagnóstico , Conmoción Encefálica/terapia , Biomarcadores/sangre , Niño , Consejo/métodos , Manejo de la Enfermedad , Medicina Basada en la Evidencia/métodos , Humanos , Pruebas Neuropsicológicas , Educación del Paciente como Asunto/métodos , Pronóstico , Radiografía , Factores de Riesgo , Cráneo/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X
10.
JAMA Pediatr ; 172(11): e182847, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30193325

RESUMEN

Importance: In recent years, there has been an exponential increase in the research guiding pediatric mild traumatic brain injury (mTBI) clinical management, in large part because of heightened concerns about the consequences of mTBI, also known as concussion, in children. The CDC National Center for Injury Prevention and Control's (NCIPC) Board of Scientific Counselors (BSC), a federal advisory committee, established the Pediatric Mild TBI Guideline workgroup to complete this systematic review summarizing the first 25 years of literature in this field of study. Objective: To conduct a systematic review of the pediatric mTBI literature to serve as the foundation for an evidence-based guideline with clinical recommendations associated with the diagnosis and management of pediatric mTBI. Evidence Review: Using a modified Delphi process, the authors selected 6 clinical questions on diagnosis, prognosis, and management or treatment of pediatric mTBI. Two consecutive searches were conducted on PubMed, Embase, ERIC, CINAHL, and SportDiscus. The first included the dates January 1, 1990, to November 30, 2012, and an updated search included December 1, 2012, to July 31, 2015. The initial search was completed from December 2012 to January 2013; the updated search, from July 2015 to August 2015. Two authors worked in pairs to abstract study characteristics independently for each article selected for inclusion. A third author adjudicated disagreements. The risk of bias in each study was determined using the American Academy of Neurology Classification of Evidence Scheme. Conclusion statements were developed regarding the evidence within each clinical question, and a level of confidence in the evidence was assigned to each conclusion using a modified GRADE methodology. Data analysis was completed from October 2014 to May 2015 for the initial search and from November 2015 to April 2016 for the updated search. Findings: Validated tools are available to assist clinicians in the diagnosis and management of pediatric mTBI. A significant body of research exists to identify features that are associated with more serious TBI-associated intracranial injury, delayed recovery from mTBI, and long-term sequelae. However, high-quality studies of treatments meant to improve mTBI outcomes are currently lacking. Conclusions and Relevance: This systematic review was used to develop an evidence-based clinical guideline for the diagnosis and management of pediatric mTBI. While an increasing amount of research provides clinically useful information, this systematic review identified key gaps in diagnosis, prognosis, and management.


Asunto(s)
Conmoción Encefálica/diagnóstico , Conmoción Encefálica/terapia , Biomarcadores/análisis , Niño , Técnica Delphi , Manejo de la Enfermedad , Medicina Basada en la Evidencia/métodos , Humanos , Pruebas Neuropsicológicas , Guías de Práctica Clínica como Asunto , Pronóstico
11.
Dev Neurosci ; 39(5): 413-429, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28651252

RESUMEN

During human brain development, anatomic regions mature at different rates. Quantitative anatomy-specific analysis of longitudinal diffusion tensor imaging (DTI) and magnetic resonance spectroscopic imaging (MRSI) data may improve our ability to quantify and categorize these maturational changes. Computational tools designed to quickly fuse and analyze imaging information from multiple, technically different datasets would facilitate research on changes during normal brain maturation and for comparison to disease states. In the current study, we developed a complete battery of computational tools to execute such data analyses that include data preprocessing, tract-based statistical analysis from DTI data, automated brain anatomy parsing from T1-weighted MR images, assignment of metabolite information from MRSI data, and co-alignment of these multimodality data streams for reporting of region-specific indices. We present statistical analyses of regional DTI and MRSI data in a cohort of normal pediatric subjects (n = 72; age range: 5-18 years; mean 12.7 ± 3.3 years) to establish normative data and evaluate maturational trends. Several regions showed significant maturational changes for several DTI parameters and MRSI ratios, but the percent change over the age range tended to be small. In the subcortical region (combined basal ganglia [BG], thalami [TH], and corpus callosum [CC]), the largest combined percent change was a 10% increase in fractional anisotropy (FA) primarily due to increases in the BG (12.7%) and TH (9%). The largest significant percent increase in N-acetylaspartate (NAA)/creatine (Cr) ratio was seen in the brain stem (BS) (18.8%) followed by the subcortical regions in the BG (11.9%), CC (8.9%), and TH (6.0%). We found consistent, significant (p < 0.01), but weakly positive correlations (r = 0.228-0.329) between NAA/Cr ratios and mean FA in the BS, BG, and CC regions. Age- and region-specific normative MR diffusion and spectroscopic metabolite ranges show brain maturation changes and are requisite for detecting abnormalities in an injured or diseased population.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Espectroscopía de Resonancia Magnética , Adolescente , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Automatización , Encéfalo/patología , Niño , Preescolar , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Adulto Joven
12.
Radiol Res Pract ; 2016: 9305018, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27471601

RESUMEN

Background and Purpose. To determine whether the pattern of iron deposition in the fascicula nigrale in patients with Parkinson's disease would be different from age-matched controls by utilizing quantitative susceptibility mapping to measure susceptibility change. Methods. MRIs of the brain were obtained from 34 subjects, 18 with Parkinson's disease and 16 age- and gender-matched controls. Regions of interest were drawn around the fascicula nigrale and substantia nigra using SWI mapping software by blinded investigators. Statistical analyses were performed to determine susceptibility patterns of both of these regions. Results. Measurements showed significantly increased susceptibility in the substantia nigra in Parkinson's patients and an increased rostral-caudal deposition of iron in the fascicula nigrale in all subjects. This trend was exaggerated with significant correlation noted with increasing age in the Parkinson group. Conclusion. The pattern of an exaggerated iron deposition gradient of the fascicula nigrale in the Parkinson group could represent underlying tract dysfunction. Significant correlation of increasing iron deposition with increasing age may be a cumulative effect, possibly related to disease duration.

13.
J Appl Clin Med Phys ; 17(3): 442-451, 2016 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-27167268

RESUMEN

The purpose of this study was to explore the feasibility of assessing quality of diffusion tensor imaging (DTI) from multiple sites and vendors using American College of Radiology (ACR) phantom. Participating sites (Siemens (n = 2), GE (n= 2), and Philips (n = 4)) reached consensus on parameters for DTI and used the widely available ACR phantom. Tensor data were processed at one site. B0 and eddy current distortions were assessed using grid line displacement on phantom Slice 5; signal-to-noise ratio (SNR) was measured at the center and periphery of the b = 0 image; fractional anisotropy (FA) and mean diffusivity (MD) were assessed using phantom Slice 7. Variations of acquisition parameters and deviations from specified sequence parameters were recorded. Nonlinear grid line distortion was higher with linear shimming and could be corrected using the 2nd order shimming. Following image registration, eddy current distortion was consistently smaller than acquisi-tion voxel size. SNR was consistently higher in the image periphery than center by a factor of 1.3-2.0. ROI-based FA ranged from 0.007 to 0.024. ROI-based MD ranged from 1.90 × 10-3 to 2.33 × 10-3 mm2/s (median = 2.04 × 10-3 mm2/s). Two sites had image void artifacts. The ACR phantom can be used to compare key qual-ity measures of diffusion images acquired from multiple vendors at multiple sites.


Asunto(s)
Servicios Contratados/normas , Imagen de Difusión Tensora/instrumentación , Imagen de Difusión Tensora/normas , Cabeza/anatomía & histología , Fantasmas de Imagen/normas , Garantía de la Calidad de Atención de Salud/métodos , Garantía de la Calidad de Atención de Salud/normas , Humanos , Relación Señal-Ruido
14.
J Child Neurol ; 29(12): 1704-17, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24958007

RESUMEN

Neuroimaging is commonly used for the assessment of children with traumatic brain injury and has greatly advanced how children are acutely evaluated. More recently, emphasis has focused on how advanced magnetic resonance imaging methods can detect subtler injuries that could relate to the structural underpinnings of the neuropsychological and behavioral alterations that frequently occur. We examine several methods used for the assessment of pediatric brain injury. Susceptibility-weighted imaging is a sensitive 3-dimensional high-resolution technique in detecting hemorrhagic lesions associated with diffuse axonal injury. Magnetic resonance spectroscopy acquires metabolite information, which serves as a proxy for neuronal (and glial, lipid, etc) structural integrity and provides sensitive assessment of neurochemical alterations. Diffusion-weighted imaging is useful for the early detection of ischemic and shearing injury. Diffusion tensor imaging allows better structural evaluation of white matter tracts. These methods are more sensitive than conventional imaging in demonstrating subtle injury that underlies a child's clinical symptoms. There also is an increasing desire to develop computational methods to fuse imaging data to provide a more integrated analysis of the extent to which components of the neurovascular unit are affected. The future of traumatic brain injury neuroimaging research is promising and will lead to novel approaches to predict and improve outcomes.


Asunto(s)
Lesiones Encefálicas/diagnóstico , Neuroimagen/métodos , Pediatría , Humanos , Procesamiento de Imagen Asistido por Computador
15.
J Neurotrauma ; 31(17): 1497-506, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24735414

RESUMEN

Research shows that approximately 14% of school age children with mild traumatic brain injury (TBI) including sports-related concussions (SRCs) remain symptomatic three months after injury. Advanced imaging studies early after injury have shown evidence of axonal damage, reduced N-acetyl aspartate (NAA) and impaired cerebral blood flow (CBF) in individuals with mild TBI. This study was undertaken to determine whether these techniques can provide valuable information in pediatric SRC patients with persistent post-concussive symptoms. Fifteen pediatric subjects ages 8 to 17 years with persistent post-concussive symptoms were evaluated using perfusion-weighted imaging (PWI), three-dimensional (3D) magnetic resonance spectroscopic imaging, and diffusion tensor imaging (DTI) three to 12 months post-SRC. Data were compared with 15 demographically similar (age, gender, and body mass index) controls. In the bilateral thalami, SRC patients showed reduced CBF (p=0.02 and p=0.02) and relative cerebral blood volume (CBV; p=0.05 and p=0.03), compared with controls. NAA/creatine (Cr) and NAA/choline (Cho) ratios were reduced in the corpus callosum (p=0.003; p=0.05) and parietal white matter (p<0.001; p=0.006) of SRC subjects, compared with controls. Significant differences in DTI metrics differentiated patients with cognitive symptoms, compared with those without cognitive symptoms and controls. Advanced imaging methods detect a spectrum of injury including impaired axonal function, neuronal metabolism and perfusion, suggesting involvement of the neurovascular unit in the presence of persistent symptoms in pediatric SRC patients.


Asunto(s)
Conmoción Encefálica/patología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Síndrome Posconmocional/patología , Adolescente , Conmoción Encefálica/complicaciones , Circulación Cerebrovascular , Niño , Imagen de Difusión Tensora , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Masculino , Imagen Multimodal , Neuronas/patología , Proyectos Piloto
16.
J Magn Reson Imaging ; 35(1): 166-73, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21960013

RESUMEN

PURPOSE: To determine the reproducibility of 3D proton magnetic resonance spectroscopic imaging ((1)H-MRSI) of the human prostate in a multicenter setting at 1.5T. MATERIALS AND METHODS: Fourteen subjects were measured twice with 3D point-resolved spectroscopy (PRESS) (1)H-MRSI using an endorectal coil. MRSI voxels were selected in the peripheral zone and combined central gland at the same location in the prostate in both measurements. Voxels with approved spectral quality were included to calculate Bland-Altman parameters for reproducibility from the choline plus creatine to citrate ratio (CC/C). The repeated spectroscopic data were also evaluated with a standardized clinical scoring system. RESULTS: A total of 74 voxels were included for reproducibility analysis. The complete range of biologically interesting CC/C ratios was covered. The overall within-voxel standard deviation (SD) of the CC/C ratio of the repeated measurements was 0.13. This value is equal to the between-subject SD of noncancer prostate tissue. In >90% of the voxels the standardized clinical score did not differ relevantly between the measurements. CONCLUSION: Repeated measurements of in vivo 3D (1)H-MRSI of the complete prostate at 1.5T produce equal and quantitative results. The reproducibility of the technique is high enough to provide it as a reliable tool in assessing tumor presence in the prostate.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , Adulto , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional , Imagen por Resonancia Magnética/métodos , Masculino , Oncología Médica/métodos , Modelos Estadísticos , Variaciones Dependientes del Observador , Próstata/patología , Reproducibilidad de los Resultados , Espectrofotometría/métodos
17.
J Neurotrauma ; 29(4): 629-33, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21671798

RESUMEN

As part of the Traumatic Brain Injury Common Data Elements project, a large-scale effort to define common data elements across a variety of domains, including neuroimaging, special considerations for pediatric patients were introduced. This article is an extension of that initial work, in which pediatric-specific pathoanatomical entities, technical considerations, interpretation paradigms, and safety considerations were reviewed. The goal of this review was to outline differences and specific information relevant to optimal performance and proper interpretation of neuroimaging in pediatric patients with traumatic brain injury. The long-range goal of this project is to facilitate data sharing as well as to provide critical infrastructure for potential clinical trials in this major public health area.


Asunto(s)
Lesiones Encefálicas/diagnóstico , Interpretación de Imagen Asistida por Computador/métodos , Neuroimagen/métodos , Pediatría/métodos , Niño , Preescolar , Humanos , Lactante , Recién Nacido
18.
J Neurotrauma ; 29(4): 654-71, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21787167

RESUMEN

This article identifies emerging neuroimaging measures considered by the inter-agency Pediatric Traumatic Brain Injury (TBI) Neuroimaging Workgroup. This article attempts to address some of the potential uses of more advanced forms of imaging in TBI as well as highlight some of the current considerations and unresolved challenges of using them. We summarize emerging elements likely to gain more widespread use in the coming years, because of 1) their utility in diagnosis, prognosis, and understanding the natural course of degeneration or recovery following TBI, and potential for evaluating treatment strategies; 2) the ability of many centers to acquire these data with scanners and equipment that are readily available in existing clinical and research settings; and 3) advances in software that provide more automated, readily available, and cost-effective analysis methods for large scale data image analysis. These include multi-slice CT, volumetric MRI analysis, susceptibility-weighted imaging (SWI), diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), arterial spin tag labeling (ASL), functional MRI (fMRI), including resting state and connectivity MRI, MR spectroscopy (MRS), and hyperpolarization scanning. However, we also include brief introductions to other specialized forms of advanced imaging that currently do require specialized equipment, for example, single photon emission computed tomography (SPECT), positron emission tomography (PET), encephalography (EEG), and magnetoencephalography (MEG)/magnetic source imaging (MSI). Finally, we identify some of the challenges that users of the emerging imaging CDEs may wish to consider, including quality control, performing multi-site and longitudinal imaging studies, and MR scanning in infants and children.


Asunto(s)
Lesiones Encefálicas/diagnóstico , Neuroimagen/métodos , Adolescente , Adulto , Niño , Preescolar , Humanos , Lactante , Proyectos de Investigación
19.
Magn Reson Med ; 65(6): 1592-601, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21590801

RESUMEN

Brain microbleeds (BMB) are associated with chronic and acute cerebrovascular disease and present a source of pathologic iron to the brain proportional to extravasated blood. Therefore, BMB iron content is potentially a valuable biomarker. We tested noninvasive phase image methods to quantify iron content and estimate true source diameter (i.e., unobscured by the blooming effect) of BMB in postmortem human tissue. Tissue slices containing BMB were imaged using a susceptibility weighted imaging protocol at 11.7T. BMB lesions were assayed for iron content using atomic absorption spectrometry. Measurements of geometric features in phase images were related to lesion iron content and source diameter using a mathematical model. BMB diameter was estimated by image feature geometry alone without explicit relation to the magnetic susceptibility. A strong linear relationship (R(2) = 0.984, P < 0.001) predicted by theory was observed in the experimental data, presenting a tentative standardization curve where BMB iron content in similar tissues could be calculated. In addition, we report BMB iron mass measurements, as well as upper bound diameter and lower bound iron concentration estimates. Our methods potentially allows the calculation of brain iron load indices based on BMB iron content and classification of BMB by size unobscured by the blooming effect.


Asunto(s)
Encéfalo/metabolismo , Hemorragias Intracraneales/diagnóstico , Hemorragias Intracraneales/metabolismo , Hierro/análisis , Imagen por Resonancia Magnética/métodos , Autopsia , Humanos , Procesamiento de Imagen Asistido por Computador , Espectrofotometría Atómica
20.
Dev Neurosci ; 32(5-6): 343-60, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20938158

RESUMEN

Physical abuse associated with nonaccidental trauma (NAT) affects approximately 144,000 children per year in the USA and, frequently, these injuries affect the developing brain. Most infants with suspected NAT are initially evaluated by skull X-rays and computed tomography to determine whether fractures are present, the severity of the acute injury and the need for urgent neurosurgical intervention. Increasingly, magnetic resonance imaging (MRI) is conducted as it provides additional diagnostic and prognostic information about the extent and nature of the injury. In this review, we examine 4 MRI techniques as they apply to children who present acutely after NAT. Susceptibility-weighted imaging is a 3-D high-resolution MRI technique that is more sensitive than conventional imaging in detecting hemorrhagic lesions that are often associated with diffuse axonal injury (DAI). Magnetic resonance spectroscopy acquires metabolite information reflecting neuronal integrity and function from multiple brain regions and provides a sensitive, noninvasive assessment of neurochemical alterations that offers early prognostic information regarding outcome. Diffusion-weighted imaging (DWI) is based on differences in the diffusion of water molecules within the brain and has been shown to be very sensitive in the early detection of ischemic injury. It is now being used to study the direct effects of traumatic injury as well as those due to secondary ischemia. Diffusion tensor imaging is a form of DWI and allows better evaluation of white matter fiber tracts by taking advantage of the intrinsic directionality (anisotropy) of water diffusion in the human brain. It has been shown to be useful in identifying white matter abnormalities after DAI when conventional imaging appears normal. Although these imaging methods have been studied primarily in adults and children with accidental traumatic brain injury, it is clear that they have the potential to provide additional value in the imaging and clinical evaluation of children with NAT.


Asunto(s)
Lesiones Encefálicas/diagnóstico , Maltrato a los Niños/diagnóstico , Imagen por Resonancia Magnética/métodos , Niño , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...