Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 108(12): 2371-2387, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34636406

RESUMEN

PREMISE: The distribution of genetic diversity on the landscape has critical ecological and evolutionary implications. This may be especially the case on a local scale for foundation plant species because they create and define ecological communities, contributing disproportionately to ecosystem function. METHODS: We examined the distribution of genetic diversity and clones, which we defined first as unique multilocus genotypes (MLG), and then by grouping similar MLGs into multilocus lineages. We used 186 markers from inter-simple sequence repeats (ISSR) across 358 ramets from 13 patches of the foundation grass Leymus chinensis. We examined the relationship between genetic and clonal diversities, their variation with patch size, and the effect of the number of markers used to evaluate genetic diversity and structure in this species. RESULTS: Every ramet had a unique MLG. Almost all patches consisted of individuals belonging to a single multilocus lineages. We confirmed this with a clustering algorithm to group related genotypes. The predominance of a single lineage within each patch could be the result of the accumulation of somatic mutations, limited dispersal, some sexual reproduction with partners mainly restricted to the same patch, or a combination of all three. CONCLUSIONS: We found strong genetic structure among patches of L. chinensis. Consistent with previous work on the species, the clustering of similar genotypes within patches suggests that clonal reproduction combined with somatic mutation, limited dispersal, and some degree of sexual reproduction among neighbors causes individuals within a patch to be more closely related than among patches.


Asunto(s)
Ecosistema , Poaceae , Variación Genética , Genotipo , Repeticiones de Microsatélite/genética , Plantas , Reproducción
2.
Ann Bot ; 127(4): 519-531, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32249291

RESUMEN

BACKGROUND AND AIMS: Global plant trait datasets commonly identify trait relationships that are interpreted to reflect fundamental trade-offs associated with plant strategies, but often these trait relationships are not identified when evaluating them at smaller taxonomic and spatial scales. In this study we evaluate trait relationships measured on individual plants for five widespread Protea species in South Africa to determine whether broad-scale patterns of structural trait (e.g. leaf area) and physiological trait (e.g. photosynthetic rates) relationships can be detected within natural populations, and if these traits are themselves related to plant fitness. METHODS: We evaluated the variance structure (i.e. the proportional intraspecific trait variation relative to among-species variation) for nine structural traits and six physiological traits measured in wild populations. We used a multivariate path model to evaluate the relationships between structural traits and physiological traits, and the relationship between these traits and plant size and reproductive effort. KEY RESULTS: While intraspecific trait variation is relatively low for structural traits, it accounts for between 50 and 100 % of the variation in physiological traits. Furthermore, we identified few trait associations between any one structural trait and physiological trait, but multivariate regressions revealed clear associations between combinations of structural traits and physiological performance (R2 = 0.37-0.64), and almost all traits had detectable associations with plant fitness. CONCLUSIONS: Intraspecific variation in structural traits leads to predictable differences in individual-level physiological performance in a multivariate framework, even though the relationship of any particular structural trait to physiological performance may be weak or undetectable. Furthermore, intraspecific variation in both structural and physiological traits leads to differences in plant size and fitness. These results demonstrate the importance of considering measurements of multivariate phenotypes on individual plants when evaluating trait relationships and how trait variation influences predictions of ecological and evolutionary outcomes.


Asunto(s)
Proteaceae , Evolución Biológica , Fenotipo , Hojas de la Planta , Proteaceae/genética , Sudáfrica
3.
Am J Bot ; 106(2): 211-222, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30768876

RESUMEN

PREMISE OF THE STUDY: Plant traits are often associated with the environments in which they occur, but these associations often differ across spatial and phylogenetic scales. Here we study the relationship between microenvironment, microgeographical location, and traits within populations using co-occurring populations of two closely related evergreen shrubs in the genus Protea. METHODS: We measured a suite of functional traits on 147 plants along a single steep mountainside where both species occur, and we used data-loggers and soil analyses to characterize the environment at 10 microsites spanning the elevational gradient. We used Bayesian path analyses to detect trait-environment relationships in the field for each species. We used complementary data from greenhouse grown seedlings derived from wild collected seed to determine whether associations detected in the field are the result of genetic differentiation. KEY RESULTS: Microenvironmental variables differed substantially across our study site. We found strong evidence for six trait-environment associations, although these differed between species. We were unable to detect similar associations in greenhouse-grown seedlings. CONCLUSIONS: Several leaf traits were associated with temperature and soil variation in the field, but the inability to detect these in the greenhouse suggests that differences in the field are not the result of genetic differentiation.


Asunto(s)
Microclima , Proteaceae/fisiología , Altitud , Ecosistema , Proteaceae/anatomía & histología , Sudáfrica , Especificidad de la Especie
4.
Ecol Evol ; 8(3): 1853-1866, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29435259

RESUMEN

Evolutionary radiations are responsible for much of Earth's diversity, yet the causes of these radiations are often elusive. Determining the relative roles of adaptation and geographic isolation in diversification is vital to understanding the causes of any radiation, and whether a radiation may be labeled as "adaptive" or not. Across many groups of plants, trait-climate relationships suggest that traits are an important indicator of how plants adapt to different climates. In particular, analyses of plant functional traits in global databases suggest that there is an "economics spectrum" along which combinations of functional traits covary along a fast-slow continuum. We examine evolutionary associations among traits and between trait and climate variables on a strongly supported phylogeny in the iconic plant genus Protea to identify correlated evolution of functional traits and the climatic-niches that species occupy. Results indicate that trait diversification in Protea has climate associations along two axes of variation: correlated evolution of plant size with temperature and leaf investment with rainfall. Evidence suggests that traits and climatic-niches evolve in similar ways, although some of these associations are inconsistent with global patterns on a broader phylogenetic scale. When combined with previous experimental work suggesting that trait-climate associations are adaptive in Protea, the results presented here suggest that trait diversification in this radiation is adaptive.

5.
Am J Bot ; 104(5): 674-684, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28500229

RESUMEN

PREMISE OF THE STUDY: The Cape Floristic Region (CFR) of South Africa is renowned for its botanical diversity, but the evolutionary origins of this diversity remain controversial. Both neutral and adaptive processes have been implicated in driving diversification, but population-level studies of plants in the CFR are rare. Here, we investigate the limits to gene flow and potential environmental drivers of selection in Protea repens L. (Proteaceae L.), a widespread CFR species. METHODS: We sampled 19 populations across the range of P. repens and used genotyping by sequencing to identify 2066 polymorphic loci in 663 individuals. We used a Bayesian FST outlier analysis to identify single-nucleotide polymorphisms (SNPs) marking genomic regions that may be under selection; we used those SNPs to identify potential drivers of selection and excluded them from analyses of gene flow and genetic structure. RESULTS: A pattern of isolation by distance suggested limited gene flow between nearby populations. The populations of P. repens fell naturally into two or three groupings, which corresponded to an east-west split. Differences in rainfall seasonality contributed to diversification in highly divergent loci, as do barriers to gene flow that have been identified in other species. CONCLUSIONS: The strong pattern of isolation by distance is in contrast to the findings in the only other widespread species in the CFR that has been similarly studied, while the effects of rainfall seasonality are consistent with well-known patterns. Assessing the generality of these results will require investigations of other CFR species.


Asunto(s)
Ambiente , Genotipo , Proteaceae/clasificación , Aislamiento Reproductivo , Teorema de Bayes , Flujo Génico , Genética de Población , Proteaceae/genética , Sudáfrica
6.
Am J Bot ; 104(1): 102-115, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28104589

RESUMEN

PREMISE OF THE STUDY: Estimating phylogenetic relationships in relatively recent evolutionary radiations is challenging, especially if short branches associated with recent divergence result in multiple gene tree histories. We combine anchored enrichment next-generation sequencing with species tree analyses to produce a robust estimate of phylogenetic relationships in the genus Protea (Proteaceae), an iconic radiation in South Africa. METHODS: We sampled multiple individuals within 59 out of 112 species of Protea and 6 outgroup species for a total of 163 individuals, and obtained sequences for 498 low-copy, orthologous nuclear loci using anchored phylogenomics. We compare several approaches for building species trees, and explore gene tree-species tree discrepancies to determine whether poor phylogenetic resolution reflects a lack of informative sites, incomplete lineage sorting, or hybridization. KEY RESULTS: Phylogenetic estimates from species tree approaches are similar to one another and recover previously well-supported clades within Protea, in addition to providing well-supported phylogenetic hypotheses for previously poorly resolved intrageneric relationships. Individual gene trees are markedly different from one another and from species trees. Nonetheless, analyses indicate that differences among gene trees occur primarily concerning clades supported by short branches. CONCLUSIONS: Species tree methods using hundreds of nuclear loci provided strong support for many previously unresolved relationships in the radiation of the genus Protea. In cases where support for particular relationships remains low, these appear to arise from few informative sites and lack of information rather than strongly supported disagreement among gene trees.


Asunto(s)
Especiación Genética , Genoma de Planta/genética , Genómica/métodos , Proteaceae/genética , Evolución Molecular , Genes de Plantas/genética , Variación Genética , Geografía , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Genéticos , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteaceae/clasificación , Proteaceae/crecimiento & desarrollo , Sudáfrica , Especificidad de la Especie
7.
New Phytol ; 210(1): 295-309, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26618926

RESUMEN

Understanding the environmental and genetic mechanisms underlying locally adaptive trait variation across the ranges of species is a major focus of evolutionary biology. Combining transcriptome sequencing with common garden experiments on populations spanning geographical and environmental gradients holds promise for identifying such mechanisms. The South African shrub Protea repens displays diverse phenotypes in the wild along drought and temperature gradients. We grew plants from seeds collected at 19 populations spanning this species' range, and sequenced the transcriptomes of these plants to reveal gene pathways associated with adaptive trait variation. We related expression in co-expressed gene networks to trait phenotypes measured in the common garden and to source population climate. We found that expression in gene networks correlated with source-population environment and with plant traits. In particular, the activity of gene networks enriched for growth related pathways correlated strongly with source site minimum winter temperature and with leaf size, stem diameter and height in the garden. Other gene networks with enrichments for photosynthesis related genes showed associations with precipitation. Our results strongly suggest that this species displays population-level differences in gene expression that have been shaped by source population site climate, and that are reflected in trait variation along environmental gradients.


Asunto(s)
Ambiente , Regulación de la Expresión Génica de las Plantas , Proteaceae/genética , Carácter Cuantitativo Heredable , Análisis de Secuencia de ARN , Transcriptoma/genética , Metabolismo de los Hidratos de Carbono/genética , Pared Celular/metabolismo , Clima , Perfilación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Genes de Plantas , Glucólisis/genética , Fotosíntesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estomas de Plantas/anatomía & histología , Lluvia , Estaciones del Año , Temperatura
8.
Ann Bot ; 117(1): 195-207, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26424782

RESUMEN

BACKGROUND AND AIMS: Trait-environment relationships are commonly interpreted as evidence for local adaptation in plants. However, even when selection analyses support this interpretation, the mechanisms underlying differential benefits are often unknown. This study addresses this gap in knowledge using the broadly distributed South African shrub Protea repens. Specifically, the study examines whether broad-scale patterns of trait variation are consistent with spatial differences in selection and ecophysiology in the wild. METHODS: In a common garden study of plants sourced from 19 populations, associations were measured between five morphological traits and three axes describing source climates. Trait-trait and trait-environment associations were analysed in a multi-response model. Within two focal populations in the wild, selection and path analyses were used to test associations between traits, fecundity and physiological performance. KEY RESULTS: Across 19 populations in a common garden, stomatal density increased with the source population's mean annual temperature and decreased with its average amount of rainfall in midsummer. Concordantly, selection analysis in two natural populations revealed positive selection on stomatal density at the hotter, drier site, while failing to detect selection at the cooler, moister site. Dry-site plants with high stomatal density also had higher stomatal conductances, cooler leaf temperatures and higher light-saturated photosynthetic rates than those with low stomatal density, but no such relationships were present among wet-site plants. Leaf area, stomatal pore index and specific leaf area in the garden also co-varied with climate, but within-population differences were not associated with fitness in either wild population. CONCLUSIONS: The parallel patterns of broad-scale variation, differences in selection and differences in trait-ecophysiology relationships suggest a mechanism for adaptive differentiation in stomatal density. Densely packed stomata may improve performance by increasing transpiration and cooling, but predominately in drier, hotter climates. This study uniquely shows context-dependent benefits of stomatal density--a trait rarely linked to local adaptation in plants.


Asunto(s)
Adaptación Fisiológica , Clima Desértico , Estomas de Plantas/fisiología , Proteaceae/fisiología , Carácter Cuantitativo Heredable , Clima , Fertilidad , Modelos Biológicos , Análisis de Regresión , Semillas/fisiología , Especificidad de la Especie
9.
Proc Biol Sci ; 282(1806): 20150583, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25876847

RESUMEN

Polymorphic traits are central to many fundamental discoveries in evolution, yet why they are found in some species and not others remains poorly understood. We use the African genus Protea-within which more than 40% of species have co-occurring pink and white floral colour morphs-to ask whether convergent evolution and ecological similarity could explain the genus-wide pattern of polymorphism. First, we identified environmental correlates of pink morph frequency across 28 populations of four species. Second, we determined whether the same correlates could predict species-level polymorphism and monomorphism across 31 species. We found that pink morph frequency increased with elevation in Protea repens and three section Exsertae species, increased eastward in P. repens, and increased with seed predation intensity in section Exsertae. For cross-species comparisons, populations of monomorphic pink species occurred at higher elevations than populations of monomorphic white species, and 18 polymorphic species spanned broader elevational gradients than 13 monomorphic species. These results suggest that divergent selection along elevational clines has repeatedly favoured polymorphism, and that more uniform selection in altitudinally restricted species may promote colour monomorphism. Our findings are, to our knowledge, the first to link selection acting within species to the presence and absence of colour polymorphism at broader phylogenetic scales.


Asunto(s)
Evolución Biológica , Color , Ambiente , Polimorfismo Genético , Proteaceae/fisiología , Altitud , Cadena Alimentaria , Geografía , Filogenia , Proteaceae/genética , Semillas , Sudáfrica
10.
Am Nat ; 185(4): 525-37, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25811086

RESUMEN

Evolutionary radiations with extreme levels of diversity present a unique opportunity to study the role of the environment in plant evolution. If environmental adaptation played an important role in such radiations, we expect to find associations between functional traits and key climatic variables. Similar trait-environment associations across clades may reflect common responses, while contradictory associations may suggest lineage-specific adaptations. Here, we explore trait-environment relationships in two evolutionary radiations in the fynbos biome of the highly biodiverse Cape Floristic Region (CFR) of South Africa. Protea and Pelargonium are morphologically and evolutionarily diverse genera that typify the CFR yet are substantially different in growth form and morphology. Our analytical approach employs a Bayesian multiple-response generalized linear mixed-effects model, taking into account covariation among traits and controlling for phylogenetic relationships. Of the pairwise trait-environment associations tested, 6 out of 24 were in the same direction and 2 out of 24 were in opposite directions, with the latter apparently reflecting alternative life-history strategies. These findings demonstrate that trait diversity within two plant lineages may reflect both parallel and idiosyncratic responses to the environment, rather than all taxa conforming to a global-scale pattern. Such insights are essential for understanding how trait-environment associations arise and how they influence species diversification.


Asunto(s)
Evolución Biológica , Pelargonium/genética , Proteaceae/genética , Adaptación Fisiológica , Teorema de Bayes , Clima , Ambiente , Fenotipo , Filogenia , Hojas de la Planta/anatomía & histología , Sudáfrica
11.
PLoS One ; 9(4): e93217, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24695495

RESUMEN

Molecular markers can help elucidate how neutral evolutionary forces and introduction history contribute to genetic variation in invaders. We examined genetic diversity, population structure and colonization patterns in the invasive Polygonum cespitosum, a highly selfing, tetraploid Asian annual introduced to North America. We used nine diploidized polymorphic microsatellite markers to study 16 populations in the introduced range (northeastern North America), via the analyses of 516 individuals, and asked the following questions: 1) Do populations have differing levels of within-population genetic diversity? 2) Do populations form distinct genetic clusters? 3) Does population structure reflect either geographic distances or habitat similarities? We found low heterozygosity in all populations, consistent with the selfing mating system of P. cespitosum. Despite the high selfing levels, we found substantial genetic variation within and among P. cespitosum populations, based on the percentage of polymorphic loci, allelic richness, and expected heterozygosity. Inferences from individual assignment tests (Bayesian clustering) and pairwise FST values indicated high among-population differentiation, which indicates that the effects of gene flow are limited relative to those of genetic drift, probably due to the high selfing rates and the limited seed dispersal ability of P. cespitosum. Population structure did not reflect a pattern of isolation by distance nor was it related to habitat similarities. Rather, population structure appears to be the result of the random movement of propagules across the introduced range, possibly associated with human dispersal. Furthermore, the high population differentiation, genetic diversity, and fine-scale genetic structure (populations founded by individuals from different genetic sources) in the introduced range suggest that multiple introductions to this region may have occurred. High genetic diversity may further contribute to the invasive success of P. cespitosum in its introduced range.


Asunto(s)
Variación Genética/fisiología , Especies Introducidas , Polygonum/genética , Humanos , Estados Unidos
12.
Oecologia ; 171(4): 905-19, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23007806

RESUMEN

The coexistence of different color morphs is often attributed to variable selection pressures across space, time, morph frequencies, or selection agents, but the routes by which each morph is favored are rarely identified. In this study we investigated factors that influence floral color polymorphisms on a local scale in Protea, within which approximately 40% of species are polymorphic. Previous work shows that seed predators and reproductive differences likely contribute to maintaining polymorphism in four Protea species. We explored whether selection acts directly or indirectly on floral color in two populations of Protea aurea, using path analysis of pollinator behavior, nectar production, seed predation, color, morphology, and maternal fecundity fitness components. We found that avian pollinators spent more time on white morphs, likely due to nectar differences, but that this had no apparent consequences for fecundity. Instead, the number of flowers per inflorescence underpinned many of the reproductively important differences between color morphs. White morphs had more flowers per inflorescence, which itself was positively correlated with nectar production, seed predator occurrence, and total long-term seed production. The number of seeds per plant to survive predation, in contrast, was not directly associated with color or any other floral trait. Thus, although color differences may be associated with conflicting selection pressures, the selection appears to be associated with the number of flowers per inflorescence and its unmeasured correlates, rather than with inflorescence color itself.


Asunto(s)
Flores/fisiología , Pigmentación/fisiología , Polinización , Proteaceae/fisiología , Selección Genética , Animales , Escarabajos/fisiología , Conducta Alimentaria/fisiología , Fertilidad/fisiología , Modelos Estadísticos , Mariposas Nocturnas/fisiología , Proteaceae/genética , Semillas/fisiología , Sudáfrica
13.
PLoS One ; 7(12): e52035, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23272203

RESUMEN

Local adaptation along steep environmental gradients likely contributes to plant diversity in the Cape Region of South Africa, yet existing analyses of trait divergence are limited to static measurements of functional traits rather than trajectories of individual development. We explore whether five taxa of evergreen shrubs (Protea section Exsertae) differ in their developmental trajectories and capacity for plasticity using two environmentally-distinct common gardens in South Africa. We measured seedlings in the summer-dry season and winter-wet season of each of two consecutive years to characterize ontogeny and plasticity within years, as same-age leaf cohorts mature, and between years, i.e., from leaf one cohort to the next. We compared patterns of development between gardens to assess whether trait trajectories are programmed versus plastic and examined whether developmental differences covaried with characteristics of a seedling's home environment. We detected plasticity in developmental trajectories for leaf area, stomatal size, stomatal pore index, and to a limited extent specific leaf area, but not for stomatal density. We showed that the species growing in the harshest environments exhibits both the smallest increase in leaf area between years and the least change in SLA and photosynthetic rates as leaves age within years. These results show that within this clade, species have diverged in developmental trajectories and plasticity as well as in mean trait values. Some of these differences may be associated with adaptation to cold and drought stress within an environmentally-complex region.


Asunto(s)
Adaptación Fisiológica , Biodiversidad , Evolución Biológica , Ambiente , Proteaceae/fisiología , Fenotipo , Hojas de la Planta/fisiología , Carácter Cuantitativo Heredable , Estaciones del Año , Plantones , Sudáfrica
14.
Theor Popul Biol ; 82(4): 299-306, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22465353

RESUMEN

Covariation between vital rates is recognized as an important pattern to be accounted for in demographic modeling. We recently introduced a model for estimating vital rates and their covariation as a function of known and unknown effects, using generalized linear mixed models (GLMM's) implemented in a hierarchical Bayesian framework (Evans et al., 2010) In particular, this model included a model-wide year effect (YEAR) influencing all vital rates, which we used to estimate covariation between vital rates due to exogenous factors not directly included in the model. This YEAR effect connected the GLMMs of vital rates into one large model; we refer to this as the "connected GLMMs" approach. Here we used a simulation study to evaluate the performance of a simplified version of this model, compared to separate GLMMs of vital rates, in terms of their ability to estimate correlations between vital rates. We simulated data from known relationships between vital rates and a covariate, inducing correlations among the vital rates. We then estimated those correlations from the simulated data using connected vs. separate GLMMs with year random effects. We compared precision and accuracy of estimated vital rates and their correlations under three scenarios of the pervasiveness of the exogenous effect (and thus true correlations). The two approaches provide equally good point estimates of vital rate parameters, but connected GLMMs provide better estimates of covariation between vital rates than separate GLMMs, both in terms of accuracy and precision, when the common influence on vital rates is pervasive. We discuss the situations where connected GLMMs might be best used, as well as further areas of investigation for this approach.


Asunto(s)
Modelos Lineales , Teorema de Bayes
15.
Theor Popul Biol ; 80(1): 29-37, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21575649

RESUMEN

Microsatellite loci are widely used for investigating patterns of genetic variation within and among populations. Those patterns are in turn determined by population sizes, migration rates, and mutation rates. We provide exact expressions for the first two moments of the allele frequency distribution in a stochastic model appropriate for studying microsatellite evolution with migration, mutation, and drift under the assumption that the range of allele sizes is bounded. Using these results, we study the behavior of several measures related to Wright's F(ST), including Slatkin's R(ST). Our analytical approximations for F(ST) and R(ST) show that familiar relationships between N(e)m and F(ST) or R(ST) hold when the migration and mutation rates are small. Using the exact expressions for F(ST) and R(ST), our numerical results show that, when the migration and mutation rates are large, these relationships no longer hold. Our numerical results also show that the diversity measures most closely related to F(ST) depend on mutation rates, mutational models (stepwise versus two-phase), migration rates, and population sizes. Surprisingly, R(ST) is relatively insensitive to the mutation rates and mutational models. The differing behaviors of R(ST) and F(ST) suggest that properties of the among-population distribution of allele frequencies may allow the roles of mutation and migration in producing patterns of diversity to be distinguished, a topic of continuing investigation.


Asunto(s)
Evolución Biológica , Variación Genética , Repeticiones de Microsatélite , Modelos Genéticos , Animales , Flujo Genético , Sitios Genéticos , Genética de Población , Humanos , Mutación
16.
New Phytol ; 191(2): 555-563, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21449951

RESUMEN

Competing evolutionary forces shape plant breeding systems (e.g. inbreeding depression, reproductive assurance). Which of these forces prevails in a given population or species is predicted to depend upon such factors as life history, ecological conditions, and geographical context. Here, we examined two such predictions: that self-compatibility should be associated with the annual life history or extreme climatic conditions. We analyzed data from a clade of plants remarkable for variation in breeding system, life history and climatic conditions (Oenothera, sections Anogra and Kleinia, Onagraceae). We used a phylogenetic comparative approach and Bayesian or hybrid Bayesian tests to account for phylogenetic uncertainty. Geographic information system (GIS)-based climate data and ecological niche modeling allowed us to quantify climatic conditions. Breeding system and reproductive life span are not correlated in Anogra and Kleinia. Instead, self-compatibility is associated with the extremes of temperature in the coldest part of the year and precipitation in the driest part of the year. In the 60 yr since this pattern was anticipated, this is the first demonstration of a relationship between the evolution of self-compatibility and climatic extremes. We discuss possible explanations for this pattern and possible implications with respect to anthropogenic climate change.


Asunto(s)
Adaptación Biológica/fisiología , Oenothera biennis/fisiología , Adaptación Biológica/genética , Teorema de Bayes , Biodiversidad , Evolución Biológica , Clima , Ecosistema , Geografía , Endogamia , Oenothera biennis/genética , Filogenia , Reproducción/genética
17.
Evolution ; 65(1): 108-24, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20840595

RESUMEN

Local adaptation along environmental gradients may drive plant species radiation within the Cape Floristic Region (CFR), yet few studies examine the role of ecologically based divergent selection within CFR clades. In this study, we ask whether populations within the monophyletic white protea clade (Protea section Exsertae, Proteaceae) differ in key functional traits along environmental gradients and whether differences are consistent with local adaptation. Using seven taxa, we measured trait-environment associations and selection gradients across 35 populations of wild adults and their offspring grown in two common gardens. Focal traits were leaf size and shape, specific leaf area (SLA), stomatal density, growth, and photosynthetic rate. Analyses on wild and common garden plants revealed heritable trait differences that were associated with gradients in rainfall seasonality, drought stress, cold stress, and less frequently, soil fertility. Divergent selection between gardens generally matched trait-environment correlations and literature-based predictions, yet variation in selection regimes among wild populations generally did not. Thus, selection via seedling survival may promote gradient-wide differences in SLA and leaf area more than does selection via adult fecundity. By focusing on the traits, life stages, and environmental clines that drive divergent selection, our study uniquely demonstrates adaptive differentiation among plant populations in the CFR.


Asunto(s)
Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Proteaceae/genética , Proteaceae/fisiología , Adaptación Biológica , Clima , Ambiente , Genes de Plantas , Filogenia , Hojas de la Planta/crecimiento & desarrollo , Polimorfismo Genético , Proteaceae/clasificación , Proteaceae/crecimiento & desarrollo , Selección Genética , Sudáfrica
18.
Biometrics ; 67(3): 1073-82, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21114661

RESUMEN

An important fraction of recently generated molecular data is dominant markers. They contain substantial information about genetic variation but dominance makes it impossible to apply standard techniques to calculate measures of genetic differentiation, such as F-statistics. In this article, we propose a new Bayesian beta-mixture model that more accurately describes the genetic structure from dominant markers and estimates multiple F(ST) s from the sample. The model also has important application for codominant markers and single-nucleotide polymorphism (SNP) data. The number of F(ST) is assumed unknown beforehand and follows a random distribution. The reversible jump algorithm is used to estimate the unknown number of multiple F(ST) s. We evaluate the performance of three split proposals and the overall performance of the proposed model based on simulated dominant marker data. The model could reliably identify and estimate a spectrum of degrees of genetic differentiation present in multiple loci. The estimates of F(ST) s also incorporate uncertainty about the magnitude of within-population inbreeding coefficient. We illustrate the method with two examples, one using dominant marker data from a rare orchid and the other using codominant marker data from human populations.


Asunto(s)
Genes Dominantes , Marcadores Genéticos , Genética de Población/estadística & datos numéricos , Algoritmos , Biometría/métodos , Estructuras Genéticas , Humanos , Endogamia , Plantas/genética , Polimorfismo de Nucleótido Simple
19.
Oecologia ; 165(1): 261-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21053020

RESUMEN

Increased nitrogen (N) deposition, resulting from the combustion of fossil fuels, production of synthetic fertilizers, growth of N(2)-fixing crops and high-intensity agriculture, is one of the anthropogenic factors most likely to cause global biodiversity changes over the next century. This influence may be especially large in temperate zone forests, which are highly N limited and occur in regions with the highest levels of N deposition. Within these ecosystems, N(2)-fixing plants, including legumes, may be more sensitive to N deposition than other plant species. Though it has long been recognized that the competitive edge conferred by N(2)-fixation diminishes with increasing soil N availability, the conservation implications of increased N deposition on native N(2)-fixers have received less attention. We focus on Desmodium cuspidatum, which has experienced dramatic population losses in the last 30-40 years in the northeastern United States. We explore competition between this regionally threatened legume and a common non-N(2)-fixing neighbor, Solidago canadensis, across a gradient of N deposition. Our data show that increased N deposition may be detrimental to N(2)-fixers such as D. cuspidatum in two ways: (1) biomass accumulation in the non-N(2)-fixer, S. canadensis, responds more strongly to increasing N deposition, and (2) S. canadensis competes strongly for available mineral nitrogen and can assimilate N previously fixed by D. cuspidatum, resulting in D. cuspidatum relying more heavily on energetically expensive N(2)-fixation when grown with S. canadensis. N deposition may thus reduce or eliminate the competitive advantage of N(2)-fixing species growing in N-limited ecosystems.


Asunto(s)
Fabaceae/fisiología , Nitrógeno/metabolismo , Biomasa , Fabaceae/crecimiento & desarrollo , Fabaceae/metabolismo , New England , Fijación del Nitrógeno , Densidad de Población , Dinámica Poblacional , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Solidago/fisiología
20.
Mol Ecol ; 19(18): 3968-80, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20723047

RESUMEN

Adaptive radiations likely underlie much of the world's diversity, especially that of hyper-diverse regions. They are usually characterized by a burst of speciation early in their evolutionary history, a pattern which can be detected using population genetic tools. The Cape Floristic Region (CFR) of southwestern South Africa is home to many spectacular plant radiations. Here, we investigate the white proteas (Protea section Exsertae), a typical CFR radiation, to determine if it demonstrates the burst of speciation associated with adaptive radiations in recent models. Inferences from individual assignment, tree-based population relationships, and pairwise F-statistics based on 10 microsatellite loci reveal that while the white proteas radiated recently they did not radiate explosively. In addition, we found evidence that there is little gene flow between sampled populations of most species. Taken together, these results demonstrate that within a small clade, the processes underlying the radiation are different from those envisioned by current models of adaptive radiation and suggest that geographical isolation could have played a role in the diversification of the group. Our study implicates both adaptive and non-adaptive processes in the evolution of botanical diversity of the CFR.


Asunto(s)
Especiación Genética , Genética de Población , Proteaceae/genética , Análisis por Conglomerados , Evolución Molecular , Flujo Génico , Geografía , Repeticiones de Microsatélite , Modelos Genéticos , Análisis de Secuencia de ADN , Sudáfrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...