Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Hum Neurosci ; 18: 1320806, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450221

RESUMEN

The Deep Brain Stimulation (DBS) Think Tank XI was held on August 9-11, 2023 in Gainesville, Florida with the theme of "Pushing the Forefront of Neuromodulation". The keynote speaker was Dr. Nico Dosenbach from Washington University in St. Louis, Missouri. He presented his research recently published in Nature inn a collaboration with Dr. Evan Gordon to identify and characterize the somato-cognitive action network (SCAN), which has redefined the motor homunculus and has led to new hypotheses about the integrative networks underpinning therapeutic DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers, and researchers (from industry and academia) can freely discuss current and emerging DBS technologies, as well as logistical and ethical issues facing the field. The group estimated that globally more than 263,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: cutting-edge translational neuromodulation, cutting-edge physiology, advances in neuromodulation from Europe and Asia, neuroethical dilemmas, artificial intelligence and computational modeling, time scales in DBS for mood disorders, and advances in future neuromodulation devices.

2.
Neuromodulation ; 27(3): 509-519, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36797194

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) programming is time intensive. Recent advances in sensing technology of local field potentials (LFPs) may enable improvements. Few studies have compared the use of this technology with standard of care. OBJECTIVE/HYPOTHESIS: Sensing technology of subthalamic nucleus (STN) DBS leads in Parkinson's disease (PD) is reliable and predicts the optimal contacts and settings as predicted by clinical assessment. MATERIALS AND METHODS: Five subjects with PD (n = 9 hemispheres) with bilateral STN DBS and sensing capable battery replacement were recruited. An LFP sensing review of all bipolar contact pairs was performed three times. Contact with the maximal beta peak power (MBP) was then clinically assessed in a double-blinded fashion, and five conditions were tested: 1) entry settings, 2) off stimulation, 3) MBP at 30 µs, 4) MBP at 60 µs, and 5) MBP at 90 µs. RESULTS: Contact and frequency of the MBP power in all hemispheres did not differ across sessions. The entry settings matched with the contact with the MBP power in 5 of 9 hemispheres. No clinical difference was evident in the stimulation conditions. The clinician and subject preferred settings determined by MBP power in 7 of 9 and 5 of 7 hemispheres, respectively. CONCLUSIONS: This study indicates that STN LFPs in PD recorded directly from contacts of the DBS lead provide consistent recordings across the frequency range and a reliably detected beta peak. Furthermore, programming based on the MBP power provides at least clinical equivalence to standard of care programming with STN DBS.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Proyectos Piloto , Núcleo Subtalámico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...