Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neural Circuits ; 17: 1138358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334059

RESUMEN

The anterior cingulate cortex (ACC) plays a crucial role in encoding, consolidating and retrieving memories related to emotionally salient experiences, such as aversive and rewarding events. Various studies have highlighted its importance for fear memory processing, but its circuit mechanisms are still poorly understood. Cortical layer 1 (L1) of the ACC might be a particularly important site of signal integration, since it is a major entry point for long-range inputs, which is tightly controlled by local inhibition. Many L1 interneurons express the ionotropic serotonin receptor 3a (5HT3aR), which has been implicated in post-traumatic stress disorder and in models of anxiety. Hence, unraveling the response dynamics of L1 interneurons and subtypes thereof during fear memory processing may provide important insights into the microcircuit organization regulating this process. Here, using 2-photon laser scanning microscopy of genetically encoded calcium indicators through microprisms in awake mice, we longitudinally monitored over days the activity of L1 interneurons in the ACC in a tone-cued fear conditioning paradigm. We observed that tones elicited responses in a substantial fraction of the imaged neurons, which were significantly modulated in a bidirectional manner after the tone was associated to an aversive stimulus. A subpopulation of these neurons, the neurogliaform cells (NGCs), displayed a net increase in tone-evoked responses following fear conditioning. Together, these results suggest that different subpopulations of L1 interneurons may exert distinct functions in the ACC circuitry regulating fear learning and memory.


Asunto(s)
Condicionamiento Clásico , Miedo , Giro del Cíngulo , Interneuronas , Animales , Ratones , Miedo/fisiología , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Interneuronas/fisiología , Memoria/fisiología , Condicionamiento Clásico/fisiología , Masculino , Señalización del Calcio , Receptores de Serotonina/metabolismo , Neuroglía/fisiología
2.
Neuron ; 110(24): 4057-4073.e8, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36202095

RESUMEN

The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of PSD95 lifetimes extending from hours to several months, with distinct spatial distributions in dendrites, neurons, and brain regions. Synapses with short protein lifetimes are enriched in young animals and in brain regions controlling innate behaviors, whereas synapses with long protein lifetimes accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. Synapse protein lifetime increases throughout the brain in a mouse model of autism and schizophrenia. Protein lifetime adds a further layer to synapse diversity and enriches prevailing concepts in brain development, aging, and disease.


Asunto(s)
Longevidad , Sinapsis , Ratones , Animales , Sinapsis/fisiología , Neuronas/fisiología , Encéfalo/fisiología , Homólogo 4 de la Proteína Discs Large/metabolismo
3.
Commun Biol ; 5(1): 352, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418660

RESUMEN

Structural synaptic plasticity may underlie experience and learning-dependent changes in cortical circuits. In contrast to excitatory pyramidal neurons, insight into the structural plasticity of inhibitory neurons remains limited. Interneurons are divided into various subclasses, each with specialized functions in cortical circuits. Further knowledge of subclass-specific structural plasticity of interneurons is crucial to gaining a complete mechanistic understanding of their contribution to cortical plasticity overall. Here, we describe a subpopulation of superficial cortical multipolar interneurons expressing vasoactive intestinal peptide (VIP) with high spine densities on their dendrites located in layer (L) 1, and with the electrophysiological characteristics of bursting cells. Using longitudinal imaging in vivo, we found that the majority of the spines are highly dynamic, displaying lifetimes considerably shorter than that of spines on pyramidal neurons. Using correlative light and electron microscopy, we confirmed that these VIP spines are sites of excitatory synaptic contacts, and are morphologically distinct from other spines in L1.


Asunto(s)
Interneuronas , Péptido Intestinal Vasoactivo , Interneuronas/fisiología , Plasticidad Neuronal/fisiología , Neuronas , Células Piramidales/fisiología , Péptido Intestinal Vasoactivo/análisis
4.
Neuroscience ; 489: 57-68, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634424

RESUMEN

N-methyl-d-aspartate receptor-mediated ( spikes can be causally linked to the induction of synaptic long-term potentiation (LTP) in hippocampal and cortical pyramidal cells. However, it is unclear if they regulate plasticity at a local or global scale in the dendritic tree. Here, we used dendritic patch-clamp recordings and calcium imaging to investigate the integrative properties of single dendrites of hippocampal CA3 cells. We show that local hyperpolarization of a single dendritic segment prevents NMDA spikes, their associated calcium transients, as well as LTP in a branch-specific manner. This result provides direct, causal evidence that the single dendritic branch can operate as a functional unit in regulating CA3 pyramidal cell plasticity.


Asunto(s)
Dendritas , Receptores de N-Metil-D-Aspartato , Calcio/metabolismo , Dendritas/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
5.
Semin Cell Dev Biol ; 125: 68-75, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34332885

RESUMEN

The cerebral cortex integrates sensory information with emotional states and internal representations to produce coherent percepts, form associations, and execute voluntary actions. For the cortex to optimize perception, its neuronal network needs to dynamically retrieve and encode new information. Over the last few decades, research has started to provide insight into how the cortex serves these functions. Building on classical Hebbian plasticity models, the latest hypotheses hold that throughout experience and learning, streams of feedforward, feedback, and modulatory information operate in selective and coordinated manners to alter the strength of synapses and ultimately change the response properties of cortical neurons. Here, we describe cortical plasticity mechanisms that involve the concerted action of feedforward and long-range feedback input onto pyramidal neurons as well as the implication of local disinhibitory circuit motifs in this process.


Asunto(s)
Corteza Cerebral , Modelos Neurológicos , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/fisiología
6.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619110

RESUMEN

The organization of sensory maps in the cerebral cortex depends on experience, which drives homeostatic and long-term synaptic plasticity of cortico-cortical circuits. In the mouse primary somatosensory cortex (S1) afferents from the higher-order, posterior medial thalamic nucleus (POm) gate synaptic plasticity in layer (L) 2/3 pyramidal neurons via disinhibition and the production of dendritic plateau potentials. Here we address whether these thalamocortically mediated responses play a role in whisker map plasticity in S1. We find that trimming all but two whiskers causes a partial fusion of the representations of the two spared whiskers, concomitantly with an increase in the occurrence of POm-driven N-methyl-D-aspartate receptor-dependent plateau potentials. Blocking the plateau potentials restores the archetypical organization of the sensory map. Our results reveal a mechanism for experience-dependent cortical map plasticity in which higher-order thalamocortically mediated plateau potentials facilitate the fusion of normally segregated cortical representations.


Asunto(s)
Potenciales de Acción/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Red Nerviosa/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Vibrisas/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Mapeo Encefálico/métodos , Maleato de Dizocilpina/farmacología , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/anatomía & histología , Plasticidad Neuronal/efectos de los fármacos , Imagen Óptica , Técnicas de Placa-Clamp , Picrotoxina/farmacología , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Somatosensorial/anatomía & histología , Tálamo/anatomía & histología , Vibrisas/lesiones
8.
Nat Commun ; 11(1): 3245, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591523

RESUMEN

Neurons in primary sensory cortex encode a variety of stimulus features upon perceptual learning. However, it is unclear whether the acquired stimulus selectivity remains stable when the same input is perceived in a different context. Here, we monitor the activity of individual neurons in the mouse primary somatosensory cortex during reward-based texture discrimination. We track their stimulus selectivity before and after changing reward contingencies, which allows us to identify various classes of neurons. We find neurons that stably represented a texture or the upcoming behavioral choice, but the majority is dynamic. Among those, a subpopulation of neurons regains texture selectivity contingent on the associated reward value. These value-sensitive neurons forecast the onset of learning by displaying a distinct and transient increase in activity, depending on past behavioral experience. Thus, stimulus selectivity of excitatory neurons during perceptual learning is dynamic and largely relies on behavioral contingencies, even in primary sensory cortex.


Asunto(s)
Percepción/fisiología , Aprendizaje Inverso/fisiología , Corteza Somatosensorial/fisiología , Animales , Conducta Animal , Señalización del Calcio , Conducta de Elección , Discriminación en Psicología , Masculino , Ratones Endogámicos C57BL , Neuronas/fisiología , Recompensa , Sensación , Factores de Tiempo
9.
Curr Biol ; 30(9): 1589-1599.e10, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32169206

RESUMEN

The timing of stimulus-evoked spikes encodes information about sensory stimuli. Here we studied the neural circuits controlling this process in the mouse primary somatosensory cortex. We found that brief optogenetic activation of layer V pyramidal cells just after whisker deflection modulated the membrane potential of neurons and interrupted their long-latency whisker responses, increasing their accuracy in encoding whisker deflection time. In contrast, optogenetic inhibition of layer V during either passive whisker deflection or active whisking decreased accuracy in encoding stimulus or touch time, respectively. Suppression of layer V pyramidal cells increased reaction times in a texture discrimination task. Moreover, two-color optogenetic experiments revealed that cortical inhibition was efficiently recruited by layer V stimulation and that it mainly involved activation of parvalbumin-positive rather than somatostatin-positive interneurons. Layer V thus performs behaviorally relevant temporal sharpening of sensory responses through circuit-specific recruitment of cortical inhibition.


Asunto(s)
Corteza Somatosensorial/anatomía & histología , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Tacto/fisiología , Vibrisas/fisiología , Potenciales de Acción/fisiología , Animales , Ratones , Neuronas/fisiología , Factores de Tiempo
10.
Nat Methods ; 16(11): 1105-1108, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31527839

RESUMEN

Light-sheet microscopy is an ideal technique for imaging large cleared samples; however, the community is still lacking instruments capable of producing volumetric images of centimeter-sized cleared samples with near-isotropic resolution within minutes. Here, we introduce the mesoscale selective plane-illumination microscopy initiative, an open-hardware project for building and operating a light-sheet microscope that addresses these challenges and is compatible with any type of cleared or expanded sample ( www.mesospim.org ).


Asunto(s)
Microscopía Fluorescente/instrumentación , Animales , Embrión de Pollo , Microscopía Fluorescente/métodos , Programas Informáticos
11.
Neuron ; 101(1): 91-102.e4, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30472077

RESUMEN

Sensory experience and perceptual learning changes receptive field properties of cortical pyramidal neurons (PNs), largely mediated by synaptic long-term potentiation (LTP). The circuit mechanisms underlying cortical LTP remain unclear. In the mouse somatosensory cortex, LTP can be elicited in layer 2/3 PNs by rhythmic whisker stimulation. We dissected the synaptic circuitry underlying this type of plasticity in thalamocortical slices. We found that projections from higher-order, posterior medial thalamic complex (POm) are key to eliciting N-methyl-D-aspartate receptor (NMDAR)-dependent LTP of intracortical synapses. Paired activation of cortical and higher-order thalamocortical inputs increased vasoactive intestinal peptide (VIP) and parvalbumin (PV) interneuron (IN) activity and decreased somatostatin (SST) IN activity, which together disinhibited the PNs. VIP IN-mediated disinhibition was critical for inducing LTP. This study reveals a circuit motif in which higher-order thalamic inputs gate synaptic plasticity via disinhibition. This motif may allow contextual feedback to shape synaptic circuits that process first-order sensory information.


Asunto(s)
Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Filtrado Sensorial/fisiología , Corteza Somatosensorial/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/fisiología , Técnicas de Cultivo de Órganos
13.
Elife ; 72018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29557780

RESUMEN

Delineating the basic cellular components of cortical inhibitory circuits remains a fundamental issue in order to understand their specific contributions to microcircuit function. It is still unclear how current classifications of cortical interneuron subtypes relate to biological processes such as their developmental specification. Here we identified the developmental trajectory of neurogliaform cells (NGCs), the main effectors of a powerful inhibitory motif recruited by long-range connections. Using in vivo genetic lineage-tracing in mice, we report that NGCs originate from a specific pool of 5-HT3AR-expressing Hmx3+ cells located in the preoptic area (POA). Hmx3-derived 5-HT3AR+ cortical interneurons (INs) expressed the transcription factors PROX1, NR2F2, the marker reelin but not VIP and exhibited the molecular, morphological and electrophysiological profile of NGCs. Overall, these results indicate that NGCs are a distinct class of INs with a unique developmental trajectory and open the possibility to study their specific functional contribution to cortical inhibitory microcircuit motifs.


Asunto(s)
Linaje de la Célula , Corteza Cerebral/citología , Interneuronas/citología , Área Preóptica/citología , Potenciales de Acción/fisiología , Animales , Corteza Cerebral/metabolismo , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Interneuronas/metabolismo , Interneuronas/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Área Preóptica/metabolismo , Receptores de Serotonina 5-HT3/genética , Receptores de Serotonina 5-HT3/metabolismo , Proteína Reelina , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Nat Rev Neurosci ; 19(3): 166-180, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29449713

RESUMEN

Humans and many other animals have an enormous capacity to learn about sensory stimuli and to master new skills. However, many of the mechanisms that enable us to learn remain to be understood. One of the greatest challenges of systems neuroscience is to explain how synaptic connections change to support maximally adaptive behaviour. Here, we provide an overview of factors that determine the change in the strength of synapses, with a focus on synaptic plasticity in sensory cortices. We review the influence of neuromodulators and feedback connections in synaptic plasticity and suggest a specific framework in which these factors can interact to improve the functioning of the entire network.


Asunto(s)
Corteza Cerebral/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal , Neuronas/fisiología , Animales , Atención/fisiología , Humanos , Modelos Neurológicos , Vías Nerviosas/fisiología , Recompensa
15.
IEEE Trans Pattern Anal Mach Intell ; 40(3): 755-761, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28333621

RESUMEN

We propose a novel approach to reconstructing curvilinear tree structures evolving over time, such as road networks in 2D aerial images or neural structures in 3D microscopy stacks acquired in vivo. To enforce temporal consistency, we simultaneously process all images in a sequence, as opposed to reconstructing structures of interest in each image independently. We formulate the problem as a Quadratic Mixed Integer Program and demonstrate the additional robustness that comes from using all available visual clues at once, instead of working frame by frame. Furthermore, when the linear structures undergo local changes over time, our approach automatically detects them.

16.
Nat Commun ; 8(1): 2015, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222517

RESUMEN

Input from the sensory organs is required to pattern neurons into topographical maps during development. Dendritic complexity critically determines this patterning process; yet, how signals from the periphery act to control dendritic maturation is unclear. Here, using genetic and surgical manipulations of sensory input in mouse somatosensory thalamocortical neurons, we show that membrane excitability is a critical component of dendritic development. Using a combination of genetic approaches, we find that ablation of N-methyl-D-aspartate (NMDA) receptors during postnatal development leads to epigenetic repression of Kv1.1-type potassium channels, increased excitability, and impaired dendritic maturation. Lesions to whisker input pathways had similar effects. Overexpression of Kv1.1 was sufficient to enable dendritic maturation in the absence of sensory input. Thus, Kv1.1 acts to tune neuronal excitability and maintain it within a physiological range, allowing dendritic maturation to proceed. Together, these results reveal an input-dependent control over neuronal excitability and dendritic complexity in the development and plasticity of sensory pathways.


Asunto(s)
Dendritas/fisiología , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Animales , Femenino , Perfilación de la Expresión Génica , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.1/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Somatosensorial/citología , Transmisión Sináptica/fisiología , Tálamo/citología , Vibrisas/inervación , Vibrisas/fisiología
17.
Elife ; 62017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29058678

RESUMEN

The ability to measure minute structural changes in neural circuits is essential for long-term in vivo imaging studies. Here, we propose a methodology for detection and measurement of structural changes in axonal boutons imaged with time-lapse two-photon laser scanning microscopy (2PLSM). Correlative 2PLSM and 3D electron microscopy (EM) analysis, performed in mouse barrel cortex, showed that the proposed method has low fractions of false positive/negative bouton detections (2/0 out of 18), and that 2PLSM-based bouton weights are correlated with their volumes measured in EM (r = 0.93). Next, the method was applied to a set of axons imaged in quick succession to characterize measurement uncertainty. The results were used to construct a statistical model in which bouton addition, elimination, and size changes are described probabilistically, rather than being treated as deterministic events. Finally, we demonstrate that the model can be used to quantify significant structural changes in boutons in long-term imaging experiments.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía Intravital/métodos , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Terminales Presinápticos/ultraestructura , Corteza Somatosensorial/ultraestructura , Imagen de Lapso de Tiempo/métodos , Animales , Ratones , Terminales Presinápticos/fisiología
18.
Science ; 356(6345): 1335-1336, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28663458
19.
J Physiol ; 595(5): 1435-1436, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28095619
20.
Nat Commun ; 8: 14219, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134272

RESUMEN

Cortical GABAergic interneurons constitute a highly diverse population of inhibitory neurons that are key regulators of cortical microcircuit function. An important and heterogeneous group of cortical interneurons specifically expresses the serotonin receptor 3A (5-HT3AR) but how this diversity emerges during development is poorly understood. Here we use single-cell transcriptomics to identify gene expression patterns operating in Htr3a-GFP+ interneurons during early steps of cortical circuit assembly. We identify three main molecular types of Htr3a-GFP+ interneurons, each displaying distinct developmental dynamics of gene expression. The transcription factor Meis2 is specifically enriched in a type of Htr3a-GFP+ interneurons largely confined to the cortical white matter. These MEIS2-expressing interneurons appear to originate from a restricted region located at the embryonic pallial-subpallial boundary. Overall, this study identifies MEIS2 as a subclass-specific marker for 5-HT3AR-containing interstitial interneurons and demonstrates that the transcriptional and anatomical parcellation of cortical interneurons is developmentally coupled.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Neuronas GABAérgicas/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/fisiología , Interneuronas/fisiología , Animales , Biomarcadores , Factor de Transcripción COUP II/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Corteza Cerebral/anatomía & histología , Corteza Cerebral/citología , Embrión de Mamíferos , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microfluídica/métodos , Red Nerviosa/crecimiento & desarrollo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Serotonina 5-HT3/metabolismo , Proteína Reelina , Análisis de Secuencia de ARN/métodos , Serina Endopeptidasas/metabolismo , Análisis de la Célula Individual/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...