Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 25(6): 104379, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35620420

RESUMEN

The therapeutic use of RNAi has grown but often faces several hurdles related to delivery systems, compound stability, immune activation, and on-target/off-tissue effects. Self-delivering RNAi (sdRNA) molecules do not require delivery agents or excipients. Here we demonstrate the ability of sdRNA to reduce the expression of PTEN (phosphatase and tensin homolog) to stimulate regenerative axon regrowth in the injured adult CNS. PTEN-targeting sdRNA compounds were tested for efficacy in vivo by intravitreal injection after adult rat optic nerve injury. We describe critical steps in lead compound generation through the optimization of nucleotide modifications, enhancements for stability in biological matrices, and screening for off-target immunostimulatory activity. The data show that PTEN expression in vivo can be reduced using sdRNA and this enhances regeneration in adult CNS neurons after injury, raising the possibility that this method could be utilized for other clinically relevant nervous system indications.

2.
J Ocul Pharmacol Ther ; 29(10): 855-64, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24180627

RESUMEN

PURPOSE: The major challenges of developing an RNAi therapeutic include efficient delivery to and entry into the cell type of interest. Conventional ("naked" and chemically stabilized) small interfering RNAs (siRNAs) have been used in the eye in the past but they demonstrated limited clinical efficacy. Here we investigated a recently developed class of small, hydrophobic, asymmetric RNAi compounds. These compounds, termed "self-delivering rxRNAs" (sd-rxRNA(®)), are extensively modified, have a small duplex region of <15 base pairs, contain a fully phosphorothioated single-stranded tail, and readily enter cells and tissues without the requirement for a delivery vehicle. METHODS: We compared sd-rxRNA compounds with stabilized siRNAs in vitro (in ARPE-19 cells) and in vivo (intravitreal injection in mouse and rabbit eyes). Specifically, we investigated the retinal uptake, distribution, efficacy, and preliminary safety of sd-rxRNAs. RESULTS: Treatment with sd-rxRNAs resulted in uniform cellular uptake and full retina penetration in both animal models while no detectable cellular uptake was observed with stabilized siRNAs either in vitro or in vivo. Further, both in vitro and in vivo delivery (without any transfection reagent or formulation) resulted in a significant reduction of the targeted mRNA levels, which lasted 14-21 days in vivo. Retinal morphology and function were unaltered following a single administration of sd-rxRNAs. CONCLUSION: These data support the potential of developing sd-rxRNAs as a therapeutic for ocular disease.


Asunto(s)
Interferencia de ARN , ARN Interferente Pequeño/administración & dosificación , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Línea Celular , Oftalmopatías/terapia , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inyecciones Intravítreas , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Conejos , Factores de Tiempo
3.
Regen Med ; 3(5): 693-704, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18729794

RESUMEN

BACKGROUND: Human embryonic stem cells (hESCs) are a potentially inexhaustible source of cells for replacement therapy. However, successful preclinical and clinical progress requires efficient and controlled differentiation towards the specific differentiated cell fate. METHODS: We previously developed a strategy to generate blast cells (BCs) from hESCs that were capable of differentiating into vascular structures as well as into all hematopoietic cell lineages. Although the BCs were shown to repair damaged vasculature in multiple animal models, the large-scale generation of cells under these conditions was challenging. Here we report a simpler and more efficient method for robust generation of hemangioblastic progenitors. RESULTS: In addition to eliminating several expensive factors that are unnecessary, we demonstrate that bone morphogenetic protein (BMP)-4 and VEGF are necessary and sufficient to induce hemangioblastic commitment and development from hESCs during early stages of differentiation. BMP-4 and VEGF significantly upregulate T-brachyury, KDR, CD31 and Lmo2 gene expression, while dramatically downregulating Oct-4 expression. The addition of basic FGF during growth and expansion was found to further enhance BC development, consistently generating approximately 1 x 10(8) BCs from one six well plate of hESCs. CONCLUSION: This new method represents a significantly improved system for generating hemangioblasts from hESCs, and although simplified, results in an eightfold increase in cell yield.


Asunto(s)
Células Madre Embrionarias/citología , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Medicina Regenerativa/métodos , Células Madre/citología , Animales , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Humanos , Ratones , Células Madre Pluripotentes/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Stem Cells ; 26(5): 1117-27, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18292207

RESUMEN

Differentiation of human embryonic stem cells (hESCs) to specific functional cell types can be achieved using methods that mimic in vivo embryonic developmental programs. Current protocols for generating hepatocytes from hESCs are hampered by inefficient differentiation procedures that lead to low yields and large cellular heterogeneity. We report here a robust and highly efficient process for the generation of high-purity (70%) hepatocyte cultures from hESCs that parallels sequential hepatic development in vivo. Highly enriched populations of definitive endoderm were generated from hESCs and then induced to differentiate along the hepatic lineage by the sequential addition of inducing factors implicated in physiological hepatogenesis. The differentiation process was largely uniform, with cell cultures progressively expressing increasing numbers of hepatic lineage markers, including GATA4, HNF4alpha, alpha-fetoprotein, CD26, albumin, alpha-1-antitrypsin, Cyp7A1, and Cyp3A4. The hepatocytes exhibited functional hepatic characteristics, such as glycogen storage, indocyanine green uptake and release, and albumin secretion. In a mouse model of acute liver injury, the hESC-derived definitive endoderm differentiated into hepatocytes and repopulated the damaged liver. The methodology described here represents a significant step toward the efficient generation of hepatocytes for use in regenerative medicine and drug discovery.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Hepatocitos/citología , Animales , Endodermo/citología , Regulación del Desarrollo de la Expresión Génica , Hepatocitos/metabolismo , Humanos , Ratones , Factores de Tiempo , Transcripción Genética
5.
Nat Neurosci ; 8(7): 881-8, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15924135

RESUMEN

Neurotransmitter transporters are critical for synaptic neurotransmitter inactivation. Transporter inhibitors markedly increase the duration and magnitude of synaptic transmission, underscoring the importance of transporter activity in neurotransmission. Recent studies indicate that membrane trafficking dynamically governs neuronal transporter cell-surface presentation in a protein kinase C-regulated manner, suggesting that transporter trafficking profoundly affects synaptic signaling. However, the molecular architecture coupling neurotransmitter transporters to the endocytic machinery is not defined. Here, we identify nonclassical, distinct endocytic signals in the dopamine transporter (DAT) that are necessary and sufficient to drive constitutive and protein kinase C-regulated DAT internalization. The DAT internalization signal is conserved across SLC6 neurotransmitter carriers and is functional in the homologous norepinephrine transporter, suggesting that this region is likely to be the endocytic signal for all SLC6 neurotransmitter transporters. The DAT endocytic signal does not conform to classic internalization motifs, suggesting that SLC6 neurotransmitter transporters may have evolved unique endocytic mechanisms.


Asunto(s)
Endocitosis/fisiología , Glicoproteínas de Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Proteína Quinasa C/fisiología , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Células CHO , Secuencia Conservada , Cricetinae , Cricetulus , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Proteínas Transportadoras de GABA en la Membrana Plasmática , Humanos , Glicoproteínas de Membrana/genética , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Familia de Multigenes/genética , Proteínas del Tejido Nervioso/genética , Células PC12 , Estructura Terciaria de Proteína/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...