Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Neurooncol Adv ; 6(1): vdae056, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680989

RESUMEN

Background: [11C]-Methionine positron emission tomography (PET; [11C]-MET-PET) is principally used for the evaluation of brain tumors in adults. Although amino acid PET tracers are more commonly used in the evaluation of pediatric brain tumors, data on [11C]-MET-PET imaging of pediatric low-grade gliomas (pLGG) is scarce. This study aimed to investigate the roles of [11C]-MET-PET in the evaluation of pLGGs. Methods: Eighteen patients with newly diagnosed pLGG and 26 previously treated pLGG patients underwent [11C]-MET-PET met the inclusion and exclusion criteria. Tumor-to-brain uptake ratio (TBR) and metabolic tumor volumes were assessed for diagnostic performances (newly diagnosed, 15; previously treated 26), change with therapy (newly diagnosed, 9; previously treated 7), and variability among different histology (n = 12) and molecular markers (n = 7) of pLGGs. Results: The sensitivity of [11C]-MET-PET for diagnosing pLGG, newly diagnosed, and previously treated combined was 93% for both TBRmax and TBRpeak, 76% for TBRmean, and 95% for qualitative evaluation. TBRmax showed a statistically significant reduction after treatment, while other PET parameters showed a tendency to decrease. Median TBRmax, TBRpeak, and TBRmean values were slightly higher in the BRAFV600E mutated tumors compared to the BRAF fused tumors. Median TBRmax, and TBRpeak in diffuse astrocytomas were higher compared to pilocytic astrocytomas, but median TBRmean, was slightly higher in pilocytic astrocytomas. However, formal statistical analysis was not done due to the small sample size. Conclusions: Our study shows that [11C]-MET-PET reliably characterizes new and previously treated pLGGs. Our study also shows that quantitative parameters tend to decrease with treatment, and differences may exist between various pLGG types.

2.
Pediatr Radiol ; 52(7): 1314-1325, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35366073

RESUMEN

BACKGROUND: Magnetic resonance (MR) elastography of the liver measures hepatic stiffness, which correlates with the histopathological staging of liver fibrosis. Conventional Cartesian gradient-echo (GRE) MR elastography requires breath-holding, which is challenging for children. Non-Cartesian radial free-breathing MR elastography is a potential solution to this problem. OBJECTIVE: To investigate radial free-breathing MR elastography for measuring hepatic stiffness in children. MATERIALS AND METHODS: In this prospective pilot study, 14 healthy children and 9 children with liver disease were scanned at 3 T using 2-D Cartesian GRE breath-hold MR elastography (22 s/slice) and 2-D radial GRE free-breathing MR elastography (163 s/slice). Each sequence was acquired twice. Agreement in the stiffness measurements was evaluated using Lin's concordance correlation coefficient (CCC) and within-subject mean difference. The repeatability was assessed using the within-subject coefficient of variation and intraclass correlation coefficient (ICC). RESULTS: Fourteen healthy children and seven children with liver disease completed the study. Median (±interquartile range) normalized measurable liver areas were 62.6% (±26.4%) and 44.1% (±39.6%) for scan 1, and 60.3% (±21.8%) and 43.9% (±44.2%) for scan 2, for Cartesian and radial techniques, respectively. Hepatic stiffness from the Cartesian and radial techniques had close agreement with CCC of 0.89 and 0.94, and mean difference of 0.03 kPa and -0.01 kPa, for scans 1 and 2. Cartesian and radial techniques achieved similar repeatability with within-subject coefficient of variation=1.9% and 3.4%, and ICC=0.93 and 0.92, respectively. CONCLUSION: In this pilot study, radial free-breathing MR elastography was repeatable and in agreement with Cartesian breath-hold MR elastography in children.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hepatopatías , Niño , Diagnóstico por Imagen de Elasticidad/métodos , Humanos , Hígado/diagnóstico por imagen , Hígado/patología , Hepatopatías/patología , Imagen por Resonancia Magnética/métodos , Proyectos Piloto , Estudios Prospectivos , Reproducibilidad de los Resultados
3.
J Cogn Neurosci ; 31(12): 1857-1872, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31393232

RESUMEN

Declarative memory is supported by distributed brain networks in which the medial-temporal lobes (MTLs) and pFC serve as important hubs. Identifying the unique and shared contributions of these regions to successful memory performance is an active area of research, and a growing literature suggests that these structures often work together to support declarative memory. Here, we present data from a context-dependent relational memory task in which participants learned that individuals belonged in a single room in each of two buildings. Room assignment was consistent with an underlying contextual rule structure in which male and female participants were assigned to opposite sides of a building and the side assignment switched between buildings. In two experiments, neural correlates of performance on this task were evaluated using multiple neuroimaging tools: diffusion tensor imaging (Experiment 1), magnetic resonance elastography (Experiment 1), and functional MRI (Experiment 2). Structural and functional data from each individual modality provided complementary and consistent evidence that the hippocampus and the adjacent white matter tract (i.e., fornix) supported relational memory, whereas the ventromedial pFC/OFC (vmPFC/OFC) and the white matter tract connecting vmPFC/OFC to MTL (i.e., uncinate fasciculus) supported memory-guided rule use. Together, these data suggest that MTL and pFC structures differentially contribute to and support contextually guided relational memory.


Asunto(s)
Imagen de Difusión Tensora , Diagnóstico por Imagen de Elasticidad , Hipocampo/fisiología , Imagen por Resonancia Magnética , Memoria/fisiología , Corteza Prefrontal/fisiología , Lóbulo Temporal/fisiología , Sustancia Blanca/fisiología , Adolescente , Adulto , Mapeo Encefálico , Color , Cara , Femenino , Fórnix/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Recuerdo Mental , Vías Nerviosas , Desempeño Psicomotor , Memoria Espacial/fisiología , Adulto Joven
5.
Magn Reson Med ; 79(6): 2978-2985, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29086437

RESUMEN

PURPOSE: To develop a computationally fast and accurate algorithm for mono-exponential signal modelling and validate the new technique in the context of R2* mapping for iron overload assessment. METHODS: An algorithm is introduced that directly calculates R2* values from a series of images based on integration of the mono-exponential signal decay curve. The algorithm is fast, because fitting is avoided and only arithmetic computations without iterations are applied. Precision and accuracy of the method is determined in comparison to the conventional log-linear (LL), nonlinear least-squares-based Levenberg-Marquardt (NLM), and squared nonlinear Levenberg-Marquardt (SQNLM) methods, which rely on iterative curve fitting. RESULTS: In simulations, the signal integration based method consistently had the same or better accuracy than the LL, NLM, and SQNLM algorithms for R2* values ranging from 50 s-1 to 1200 s-1 . In phantoms and in vivo (12 participants), this method was robust over a wide range of R2* values and signal-to-noise ratios. Computation times were approximately 100, 1460, and 930 times faster than those of the LL, NLM, and SQNLM methods, respectively. CONCLUSIONS: The fast signal integration method accurately calculates R2* maps. It has the potential to replace conventional, mono-exponential fitting methods for quantitative MRI such as R2* parameter mapping. Magn Reson Med 79:2978-2985, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Sobrecarga de Hierro/diagnóstico , Imagen por Resonancia Magnética , Procesamiento de Señales Asistido por Computador , Adolescente , Adulto , Algoritmos , Simulación por Computador , Femenino , Análisis de Fourier , Humanos , Modelos Lineales , Masculino , Modelos Estadísticos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Relación Señal-Ruido , Programas Informáticos , Adulto Joven
6.
Magn Reson Med ; 77(4): 1619-1629, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27099178

RESUMEN

PURPOSE: To achieve high temporal frame rate, high spatial resolution and full-vocal-tract coverage for three-dimensional dynamic speech MRI by using low-rank modeling and sparse sampling. METHODS: Three-dimensional dynamic speech MRI is enabled by integrating a novel data acquisition strategy and an image reconstruction method with the partial separability model: (a) a self-navigated sparse sampling strategy that accelerates data acquisition by collecting high-nominal-frame-rate cone navigator sand imaging data within a single repetition time, and (b) are construction method that recovers high-quality speech dynamics from sparse (k,t)-space data by enforcing joint low-rank and spatiotemporal total variation constraints. RESULTS: The proposed method has been evaluated through in vivo experiments. A nominal temporal frame rate of 166 frames per second (defined based on a repetition time of 5.99 ms) was achieved for an imaging volume covering the entire vocal tract with a spatial resolution of 2.2 × 2.2 × 5.0 mm3 . Practical utility of the proposed method was demonstrated via both validation experiments and a phonetics investigation. CONCLUSION: Three-dimensional dynamic speech imaging is possible with full-vocal-tract coverage, high spatial resolution and high nominal frame rate to provide dynamic speech data useful for phonetic studies. Magn Reson Med 77:1619-1629, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Cinemagnética/métodos , Medición de la Producción del Habla/métodos , Habla/fisiología , Lengua/diagnóstico por imagen , Adulto , Algoritmos , Femenino , Humanos , Aumento de la Imagen/métodos , Laringe/anatomía & histología , Laringe/diagnóstico por imagen , Laringe/fisiología , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador , Lengua/anatomía & histología , Lengua/fisiología , Adulto Joven
7.
J Mech Behav Biomed Mater ; 59: 538-546, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27032311

RESUMEN

Magnetic resonance elastography (MRE) has shown promise in noninvasively capturing changes in mechanical properties of the human brain caused by neurodegenerative conditions. MRE involves vibrating the brain to generate shear waves, imaging those waves with MRI, and solving an inverse problem to determine mechanical properties. Despite the known anisotropic nature of brain tissue, the inverse problem in brain MRE is based on an isotropic mechanical model. In this study, distinct wave patterns are generated in the brain through the use of multiple excitation directions in order to characterize the potential impact of anisotropic tissue mechanics on isotropic inversion methods. Isotropic inversions of two unique displacement fields result in mechanical property maps that vary locally in areas of highly aligned white matter. Investigation of the corpus callosum, corona radiata, and superior longitudinal fasciculus, three highly ordered white matter tracts, revealed differences in estimated properties between excitations of up to 33%. Using diffusion tensor imaging to identify dominant fiber orientation of bundles, relationships between estimated isotropic properties and shear asymmetry are revealed. This study has implications for future isotropic and anisotropic MRE studies of white matter tracts in the human brain.


Asunto(s)
Anisotropía , Encéfalo/fisiología , Diagnóstico por Imagen de Elasticidad , Imagen por Resonancia Magnética , Imagen de Difusión Tensora , Humanos
8.
J Med Imaging (Bellingham) ; 3(2): 023501, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27088107

RESUMEN

A diffusion weighted imaging (DWI) approach that is signal-to-noise ratio (SNR) efficient and can be applied to achieve sub-mm resolutions on clinical 3 T systems was developed. The sequence combined a multislab, multishot pulsed gradient spin echo diffusion scheme with spiral readouts for imaging data and navigators. Long data readouts were used to keep the number of shots, and hence total imaging time, for the three-dimensional acquisition short. Image quality was maintained by incorporating a field-inhomogeneity-corrected image reconstruction to remove distortions associated with long data readouts. Additionally, multiple shots were required for the high-resolution images, necessitating motion induced phase correction through the use of efficiently integrated navigator data. The proposed approach is compared with two-dimensional (2-D) acquisitions that use either a spiral or a typical echo-planar imaging (EPI) acquisition to demonstrate the improved SNR efficiency. The proposed technique provided 71% higher SNR efficiency than the standard 2-D EPI approach. The adaptability of the technique to achieve high spatial resolutions is demonstrated by acquiring diffusion tensor imaging data sets with isotropic resolutions of 1.25 and 0.8 mm. The proposed approach allows for SNR-efficient sub-mm acquisitions of DWI data on clinical 3 T systems.

9.
Artículo en Inglés | MEDLINE | ID: mdl-26738022

RESUMEN

Even though the hemodynamic response is a slow phenomenon, high temporal resolution in functional fMRI can enable better differentiation between the signal of interest and physiological noise or increase the statistical power of functional studies. To increase the temporal resolution, several methods have been developed to decrease the repetition time, TR, such as simultaneous multi-slice imaging and MR encephalography approaches. In this work, a method using a fast acquisition and a partial separability model is presented to achieve a multi-slice fMRI protocol at a temporal resolution of 75 ms. The method is demonstrated on a visual block task.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Modelos Teóricos , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador , Procesamiento de Señales Asistido por Computador , Espectroscopía Infrarroja por Transformada de Fourier , Análisis y Desempeño de Tareas , Factores de Tiempo , Corteza Visual/fisiología
10.
Front Hum Neurosci ; 8: 584, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25191243

RESUMEN

Aerobic fitness has been found to play a positive role in brain and cognitive health of children. Yet, many of the neural biomarkers related to aerobic fitness remain unknown. Here, using diffusion tensor imaging, we demonstrated that higher aerobic fitness was related to greater estimates of white matter microstructure in children. Higher fit 9- and 10-year-old children showed greater fractional anisotropy (FA) in sections of the corpus callosum, corona radiata, and superior longitudinal fasciculus, compared to lower fit children. The FA effects were primarily characterized by aerobic fitness differences in radial diffusivity, thereby raising the possibility that estimates of myelination may vary as a function of individual differences in fitness during childhood. White matter structure may be another potential neural mechanism of aerobic fitness that assists in efficient communication between gray matter regions as well as the integration of regions into networks.

11.
Neuroimage ; 96: 81-7, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24657352

RESUMEN

Changes in fine motor control that eventually compromise dexterity accompany advanced age; however there is evidence that age-related decline in motor control may not be uniform across effectors. Particularly, the role of central mechanisms in effector-specific decline has not been examined but is relevant for placing age-related motor declines into the growing literature of age-related changes in brain function. We examined sub-maximal force control across three different effectors (fingers, lips, and tongue) in 18 young and 14 older adults. In parallel with the force variability measures we examined changes in white matter structural integrity in effector-specific pathways in the brain with diffusion tensor imaging (DTI). Motor pathways for each effector were identified by using an fMRI localizer task followed by tractography to identify the fiber tracts propagating to the midbrain. Increases in force control variability were found with age in all three effectors but the effectors showed different degrees of age-related variability. Motor control changes were accompanied by a decline in white matter structural integrity with age shown by measures of fractional anisotropy and radial diffusivity. The DTI metrics appear to mediate some of the age-related declines in motor control. Our findings indicate that the structural integrity of descending motor systems may play a significant role in age-related increases in motor performance variability, but that differential age-related declines in oral and manual effectors are not likely due to structural integrity of descending motor pathways in the brain.


Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Encéfalo/citología , Encéfalo/fisiología , Destreza Motora/fisiología , Sustancia Blanca/ultraestructura , Adulto , Anciano , Vías Eferentes/fisiología , Femenino , Dedos/inervación , Dedos/fisiología , Humanos , Labio/inervación , Labio/fisiología , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología , Lengua/inervación , Lengua/fisiología , Adulto Joven
12.
Magn Reson Med ; 71(2): 477-85, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24347237

RESUMEN

PURPOSE: To develop an acquisition scheme for generating MR elastography (MRE) displacement data with whole-brain coverage, high spatial resolution, and adequate signal-to-noise ratio (SNR) in a short scan time. THEORY AND METHODS: A 3D multislab, multishot acquisition for whole-brain MRE with 2.0 mm isotropic spatial resolution is proposed. The multislab approach allowed for the use of short repetition time to achieve very high SNR efficiency. High SNR efficiency allowed for a reduced acquisition time of only 6 min while the minimum SNR needed for inversion was maintained. RESULTS: The mechanical property maps estimated from whole-brain displacement data with nonlinear inversion (NLI) demonstrated excellent agreement with neuroanatomical features, including the cerebellum and brainstem. A comparison with an equivalent 2D acquisition illustrated the improvement in SNR efficiency of the 3D multislab acquisition. The flexibility afforded by the high SNR efficiency allowed for higher resolution with a 1.6 mm isotropic voxel size, which generated higher estimates of brainstem stiffness compared with the 2.0 mm isotropic acquisition. CONCLUSION: The acquisition presented allows for the capture of whole-brain MRE displacement data in a short scan time, and may be used to generate local mechanical property estimates of neuroanatomical features throughout the brain.


Asunto(s)
Encéfalo/anatomía & histología , Diagnóstico por Imagen de Elasticidad/métodos , Tronco Encefálico/anatomía & histología , Humanos
13.
J Parallel Distrib Comput ; 73(5): 686-697, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23682203

RESUMEN

Several recent methods have been proposed to obtain significant speed-ups in MRI image reconstruction by leveraging the computational power of GPUs. Previously, we implemented a GPU-based image reconstruction technique called the Illinois Massively Parallel Acquisition Toolkit for Image reconstruction with ENhanced Throughput in MRI (IMPATIENT MRI) for reconstructing data collected along arbitrary 3D trajectories. In this paper, we improve IMPATIENT by removing computational bottlenecks by using a gridding approach to accelerate the computation of various data structures needed by the previous routine. Further, we enhance the routine with capabilities for off-resonance correction and multi-sensor parallel imaging reconstruction. Through implementation of optimized gridding into our iterative reconstruction scheme, speed-ups of more than a factor of 200 are provided in the improved GPU implementation compared to the previous accelerated GPU code.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...