Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Plant Physiol ; 294: 154185, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38373389

RESUMEN

Five decades ago, the first report of a shift from C3 to CAM (crassulacean acid metabolism) photosynthesis following the imposition of stress was published in this journal. The annual, Mesembryanthemum crystallinum (Aizoaceae), was shown to be a C3 plant when grown under non-saline conditions, and a CAM plant when exposed to high soil salinity. This observation of environmentally triggered CAM eventually led to the introduction of the term facultative CAM, which categorises CAM that is induced or upregulated in response to water-deficit stress and is lost or downregulated when the stress is removed. Reversibility of C3-to-CAM shifts distinguishes stress-driven facultative-CAM responses from purely ontogenetic increases of CAM activity. We briefly review how the understanding of facultative CAM has developed, evaluate the current state of knowledge, and highlight questions of continuing interest. We demonstrate that the long-lived leaves of a perennial facultative-CAM arborescent species, Clusia pratensis, can repeatedly switch between C3 and CAM in response to multiple wet-dry-wet cycles. Undoubtedly, this is a dedicated response to environment, independent of ontogeny. We highlight the potential for engineering facultative CAM into C3 crops to provide a flexible capacity for drought tolerance.


Asunto(s)
Mesembryanthemum , Fotosíntesis , Fotosíntesis/fisiología , Mesembryanthemum/metabolismo , Metabolismo Ácido de las Crasuláceas , Productos Agrícolas/metabolismo , Agua/metabolismo
2.
Ann Bot ; 132(4): 627-654, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37698538

RESUMEN

BACKGROUND AND SCOPE: The growth of experimental studies of crassulacean acid metabolism (CAM) in diverse plant clades, coupled with recent advances in molecular systematics, presents an opportunity to re-assess the phylogenetic distribution and diversity of species capable of CAM. It has been more than two decades since the last comprehensive lists of CAM taxa were published, and an updated survey of the occurrence and distribution of CAM taxa is needed to facilitate and guide future CAM research. We aimed to survey the phylogenetic distribution of these taxa, their diverse morphology, physiology and ecology, and the likely number of evolutionary origins of CAM based on currently known lineages. RESULTS AND CONCLUSIONS: We found direct evidence (in the form of experimental or field observations of gas exchange, day-night fluctuations in organic acids, carbon isotope ratios and enzymatic activity) for CAM in 370 genera of vascular plants, representing 38 families. Further assumptions about the frequency of CAM species in CAM clades and the distribution of CAM in the Cactaceae and Crassulaceae bring the currently estimated number of CAM-capable species to nearly 7 % of all vascular plants. The phylogenetic distribution of these taxa suggests a minimum of 66 independent origins of CAM in vascular plants, possibly with dozens more. To achieve further insight into CAM origins, there is a need for more extensive and systematic surveys of previously unstudied lineages, particularly in living material to identify low-level CAM activity, and for denser sampling to increase phylogenetic resolution in CAM-evolving clades. This should allow further progress in understanding the functional significance of this pathway by integration with studies on the evolution and genomics of CAM in its many forms.


Asunto(s)
Metabolismo Ácido de las Crasuláceas , Fotosíntesis , Humanos , Filogenia , Fotosíntesis/fisiología , Plantas/genética , Plantas/metabolismo , Planeta Tierra
3.
Ann Bot ; 132(4): 597-625, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37303205

RESUMEN

BACKGROUND: Crassulacean acid metabolism (CAM) photosynthesis is a successful adaptation that has evolved often in angiosperms, gymnosperms, ferns and lycophytes. Present in ~5 % of vascular plants, the CAM diaspora includes all continents apart from Antarctica. Species with CAM inhabit most landscapes colonized by vascular plants, from the Arctic Circle to Tierra del Fuego, from below sea level to 4800 m a.s.l., from rainforests to deserts. They have colonized terrestrial, epiphytic, lithophytic, palustrine and aquatic systems, developing perennial, annual or geophyte strategies that can be structurally arborescent, shrub, forb, cladode, epiphyte, vine or leafless with photosynthetic roots. CAM can enhance survival by conserving water, trapping carbon, reducing carbon loss and/or via photoprotection. SCOPE: This review assesses the phylogenetic diversity and historical biogeography of selected lineages with CAM, i.e. ferns, gymnosperms and eumagnoliids, Orchidaceae, Bromeliaceae, Crassulaceae, Euphorbiaceae, Aizoaceae, Portulacineae (Montiaceae, Basellaceae, Halophytaceae, Didiereaceae, Talinaceae, Portulacaceae, Anacampserotaceae and Cactaceae) and aquatics. CONCLUSIONS: Most extant CAM lineages diversified after the Oligocene/Miocene, as the planet dried and CO2 concentrations dropped. Radiations exploited changing ecological landscapes, including Andean emergence, Panamanian Isthmus closure, Sundaland emergence and submergence, changing climates and desertification. Evidence remains sparse for or against theories that CAM biochemistry tends to evolve before pronounced changes in anatomy and that CAM tends to be a culminating xerophytic trait. In perennial taxa, any form of CAM can occur depending upon the lineage and the habitat, although facultative CAM appears uncommon in epiphytes. CAM annuals lack strong CAM. In CAM annuals, C3 + CAM predominates, and inducible or facultative CAM is common.


Asunto(s)
Metabolismo Ácido de las Crasuláceas , Fotosíntesis , Filogenia , Carbono/metabolismo , Ecosistema
4.
Ann Bot ; 132(4): 563-575, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37010384

RESUMEN

BACKGROUND: In January 1972, Klaus Winter submitted his first paper on crassulacean acid metabolism (CAM) whilst still an undergraduate student in Darmstadt. During the subsequent half-century, he passed his Staatsexamensarbeit, obtained his Dr. rer. nat. summa cum laude and Dr. rer. nat. habil., won a Heinz Maier-Leibnitz Prize and a Heisenberg Fellowship, and has occupied positions in Germany, Australia, the USA and Panama. Now a doyen in CAM circles, and a Senior Staff Scientist at the Smithsonian Tropical Research Institute (STRI), he has published over 300 articles, of which about 44 % are about CAM. SCOPE: I document Winter's career, attempting to place his CAM-related scientific output and evolution in the context of factors that have influenced him as he and his science progressed from the 1970s to the 2020s.


Asunto(s)
Metabolismo Ácido de las Crasuláceas , Humanos , Australia
5.
Funct Plant Biol ; 48(12): 1315, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34782062

RESUMEN

We examined whether crassulacean acid metabolism (CAM) is present in Trianthema portulacastrum L. (Aizoaceae), a pantropical, salt-tolerant C4 annual herb with atriplicoid-type Kranz anatomy in leaves but not in stems. The leaves of T. portulacastrum are slightly succulent and the stems are fleshy, similar to some species of Portulaca, the only genus known in which C4 and CAM co-occur. Low- level nocturnal acidification typical of weakly expressed, predominantly constitutive CAM was measured in plants grown for their entire life-cycle in an outdoor raised garden box. Acidification was greater in stems than in leaves. Plants showed net CO2 uptake only during the light irrespective of soil water availability. However, nocturnal traces of CO2 exchange exhibited curved kinetics of reduced CO2 loss during the middle of the night consistent with low-level CAM. Trianthema becomes the second genus of vascular land plants in which C4 and features of CAM have been demonstrated to co-occur in the same plant and the first C4 plant with CAM-type acidification described for the Aizoaceae. Traditionally the stems of herbs are not sampled in screening studies. Small herbs with mildly succulent leaves and fleshy stems might be a numerically significant component of CAM biodiversity.

6.
Funct Plant Biol ; 48(7): 691-702, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33896445

RESUMEN

When plants of the Atacama desert undergo episodic blooms, among the most prominent are succulent-leaved Cistanthe (Montiaceae). We demonstrate that two Cistanthe species, the perennial Cistanthe sp. aff. crassifolia and the annual/biannual Cistanthe sp. aff. longiscapa, can exhibit net CO2 uptake and leaf acidification patterns typical of crassulacean acid metabolism (CAM). In C. sp. aff. crassifolia leaves, CAM expression was facultative. CAM-type nocturnal net CO2 uptake and acid accumulation occurred in drought-stressed but not in well-watered plants. By contrast, CAM expression in C. sp. aff. longiscapa was largely constitutive. Nocturnal acid accumulation was present in leaves of well-watered and in droughted plants. Following water-deficit stress, net nocturnal CO2 uptake was induced and the level of acid accumulated increased. Neither nocturnal CO2 uptake nor acid accumulation was reduced when the plants were re-watered. δ13C values of a further nine field-collected Cistanthe species are consistent with a contribution of CAM to their carbon pools. In the Portulacinae, a suborder with eight CAM-containing families, Cistanthe becomes the sixth genus with CAM within the family Montiaceae, and it is likely that the ancestor of all Portulacineae also possessed CAM photosynthesis. In the stochastic rainfall landscape of the Atacama, carbon uptake in the dark is a water-use efficient mechanism that increases the carbon pool available for seed production or dormancy. The next rain event may be years away.


Asunto(s)
Dióxido de Carbono , Caryophyllales , Chile , Metabolismo Ácido de las Crasuláceas , Hojas de la Planta
7.
Funct Plant Biol ; 48(7): 647-654, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32919492

RESUMEN

Plants exhibiting the water-conserving crassulacean acid metabolism (CAM) photosynthetic pathway provide some of the most intriguing examples of photosynthetic diversity and plasticity. Here, a largely unnoticed facet of CAM-plant photosynthesis is highlighted: the co-occurrence of ontogenetically controlled constitutive and environmentally controlled facultative CAM in a species. Both forms of CAM are displayed in leaves of Coleus amboinicus Lour. (Lamiaceae), a semi-succulent perennial plant with oregano-like flavour that is native to southern and eastern Africa and naturalised elsewhere in the tropics. Under well-watered conditions, leaves assimilate CO2 predominantly by the C3 pathway. They also display low levels of CO2 uptake at night accompanied by small nocturnal increases in leaf tissue acidity. This indicates the presence of weakly expressed constitutive CAM. CAM expression is strongly enhanced in response to drought stress. The drought-enhanced component of CAM is reversible upon rewatering and thus considered to be facultative. In contrast to C. amboinicus, the thin-leaved closely related Coleus scutellarioides (L.) Benth. exhibits net CO2 fixation solely in the light via the C3 pathway, both under well-watered and drought conditions. However, low levels of nocturnal acidification detected in leaves and stems indicate that the CAM cycle is present. The highly speciose mint family, which contains few known CAM-exhibiting species and is composed predominantly of C3 species, appears to be an excellent group of plants for studying the evolutionary origins of CAM and for determining the position of facultative CAM along the C3-full CAM trajectory.


Asunto(s)
Coleus , Lamiaceae , Origanum , África Oriental , Dióxido de Carbono , Metabolismo Ácido de las Crasuláceas
8.
Funct Plant Biol ; 48(7): 655-665, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33213694

RESUMEN

We examined whether crassulacean acid metabolism (CAM) is present in Trianthema portulacastrum L. (Aizoaceae), a pantropical, salt-tolerant C4 annual herb with atriplicoid-type Kranz anatomy in leaves but not in stems. The leaves of T. portulacastrum are slightly succulent and the stems are fleshy, similar to some species of Portulaca, the only genus known in which C4 and CAM co-occur. Low- level nocturnal acidification typical of weakly expressed, predominantly constitutive CAM was measured in plants grown for their entire life-cycle in an outdoor raised garden box. Acidification was greater in stems than in leaves. Plants showed net CO2 uptake only during the light irrespective of soil water availability. However, nocturnal traces of CO2 exchange exhibited curved kinetics of reduced CO2 loss during the middle of the night consistent with low-level CAM. Trianthema becomes the second genus of vascular land plants in which C4 and features of CAM have been demonstrated to co-occur in the same plant and the first C4 plant with CAM-type acidification described for the Aizoaceae. Traditionally the stems of herbs are not sampled in screening studies. Small herbs with mildly succulent leaves and fleshy stems might be a numerically significant component of CAM biodiversity.


Asunto(s)
Aizoaceae , Dióxido de Carbono , Metabolismo Ácido de las Crasuláceas , Fotosíntesis , Hojas de la Planta
9.
Integr Comp Biol ; 59(3): 517-534, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31161205

RESUMEN

Australian Calandrinia has radiated across the Australian continent during the last 30 Ma, and today inhabits most Australian ecosystems. Given its biogeographic range and reports of facultative Crassulacean acid metabolism (CAM) photosynthesis in multiple species, we hypothesized (1) that CAM would be widespread across Australian Calandrinia and that species, especially those that live in arid regions, would engage in strong CAM, and (2) that Australian Calandrinia would be an important lineage for informing on the CAM evolutionary trajectory. We cultivated 22 Australian Calandrinia species for a drought experiment. Using physiological measurements and δ13C values we characterized photosynthetic mode across these species, mapped the resulting character states onto a phylogeny, and characterized the climatic envelopes of species in their native ranges. Most species primarily utilize C3 photosynthesis, with CAM operating secondarily, often upregulated following drought. Several phylogenetically nested species are C3, indicating evolutionary losses of CAM. No strong CAM was detected in any of the species. Results highlight the limitations of δ13C surveys in detecting C3+CAM phenotypes, and the evolutionary lability of C3+CAM phenotypes. We propose a model of CAM evolution that allows for lability and reversibility among C3+CAM phenotypes and C3 and suggest that an annual life-cycle may preclude the evolution of strong CAM.


Asunto(s)
Evolución Biológica , Rasgos de la Historia de Vida , Fotosíntesis , Portulacaceae/metabolismo , Australia
10.
J Exp Bot ; 70(22): 6571-6579, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30820551

RESUMEN

The Portulacaceae enable the study of the evolutionary relationship between C4 and crassulacean acid metabolism (CAM) photosynthesis. Shoots of well-watered plants of the C3-C4 intermediate species Portulaca cryptopetala Speg. exhibit net uptake of CO2 solely during the light. CO2 fixation is primarily via the C3 pathway as indicated by a strong stimulation of CO2 uptake when shoots were provided with air containing 2% O2. When plants were subjected to water stress, daytime CO2 uptake was reduced and CAM-type net CO2 uptake in the dark occurred. This was accompanied by nocturnal accumulation of acid in both leaves and stems, also a defining characteristic of CAM. Following rewatering, net CO2 uptake in the dark ceased in shoots, as did nocturnal acidification of the leaves and stems. With this unequivocal demonstration of stress-related reversible, i.e. facultative, induction of CAM, P. cryptopetala becomes the first C3-C4 intermediate species reported to exhibit CAM. Portulaca molokiniensis Hobdy, a C4 species, also exhibited CAM only when subjected to water stress. Facultative CAM has now been demonstrated in all investigated species of Portulaca, which are well sampled from across the phylogeny. This strongly suggests that in Portulaca, a lineage in which species engage predominately in C4 photosynthesis, facultative CAM is ancestral to C4. In a broader context, it has now been demonstrated that CAM can co-exist in leaves that exhibit any of the other types of photosynthesis known in terrestrial plants: C3, C4 and C3-C4 intermediate.


Asunto(s)
Carbono/metabolismo , Ácidos Carboxílicos/metabolismo , Dióxido de Carbono/metabolismo , Luz , Filogenia , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Brotes de la Planta/metabolismo , Brotes de la Planta/efectos de la radiación
11.
J Exp Bot ; 70(22): 6561-6570, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30535159

RESUMEN

Demonstration of crassulacean acid metabolism (CAM) in species with low usage of this system relative to C3-photosynthetic CO2 assimilation can be challenging experimentally but provides crucial information on the early steps of CAM evolution. Here, weakly expressed CAM was detected in the well-known pantropical coastal, leaf-succulent herb Sesuvium portulacastrum, demonstrating that CAM is present in the Sesuvioideae, the only sub-family of the Aizoaceae in which it had not yet been shown conclusively. In outdoor plots in Panama, leaves and stems of S. portulacastrum consistently exhibited a small degree of nocturnal acidification which, in leaves, increased during the dry season. In potted plants, nocturnal acidification was mainly facultative, as levels of acidification increased in a reversible manner following the imposition of short-term water-stress. In drought-stressed plants, nocturnal net CO2 exchange approached the CO2-compensation point, consistent with low rates of CO2 dark fixation sufficient to eliminate respiratory carbon loss. Detection of low-level CAM in S. portulacastrum adds to the growing number of species that cannot be considered C3 plants sensu stricto, although they obtain CO2 principally via the C3 pathway. Knowledge about the presence/absence of low-level CAM is critical when assessing trajectories of CAM evolution in lineages. The genus Sesuvium is of particular interest because it also contains C4 species.


Asunto(s)
Aizoaceae/metabolismo , Ácidos Carboxílicos/metabolismo , Biomasa , Dióxido de Carbono/metabolismo , Fotones , Lluvia , Estaciones del Año
12.
Am J Bot ; 105(6): 1021-1034, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29995314

RESUMEN

PREMISE OF THE STUDY: Calandrinia are small, succulent herbs that vary broadly in habitat, morphology, life history, and photosynthetic metabolism. The lineage is placed within the Montiaceae, which in turn is sister to the rest of the Portulacineae (Caryophyllales). Calandrinia occupy two distinct biogeographic regions, one in the Americas (~14 species), and one in Australia (~74 species). Past analyses of the Montiaceae present conflicting hypotheses for the phylogenetic placement and monophyly of Calandrinia, and to date, there has been no molecular phylogenetic analysis of the Australian species. METHODS: Using a targeted gene enrichment approach, we sequenced 297 loci from multiple gene families across the Montiaceae, including all named and 16 putative new species of Australian Calandrinia, and the enigmatic monotypic genus Rumicastrum. KEY RESULTS: All data sets and analyses reject the monophyly of Calandrinia, with Australian and New World Calandrinia each comprising distinct and well-supported clades, and Rumicastrum nested within Australian Calandrinia. We provide the first well-supported phylogeny for Australian Calandrinia, which includes all named species and several phrase-named taxa. CONCLUSIONS: This study brings much needed clarity to relationships within Montiaceae and confirms that New World and Australian Calandrinia do not form a clade. Australian Calandrinia is a longtime resident of the continent, having diverged from its sister lineage ~30 Ma, concurrent with separation of Australia from Antarctica. Most diversification occurred during the middle Miocene, with lowered speciation and/or higher extinction rates coincident with the establishment of severe aridity by the late Miocene.


Asunto(s)
Caryophyllales/genética , Filogenia , Australia , Filogeografía
13.
Photosynth Res ; 134(1): 17-25, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28871459

RESUMEN

Crassulacean acid metabolism (CAM) was demonstrated in four small endemic Australian terrestrial succulents from the genus Calandrinia (Montiaceae) viz. C. creethiae, C. pentavalvis, C. quadrivalvis and C. reticulata. CAM was substantiated by measurements of CO2 gas-exchange and nocturnal acidification. In all species, the expression of CAM was overwhelmingly facultative in that nocturnal H+ accumulation was greatest in droughted plants and zero, or close to zero, in plants that were well-watered, including plants that had been droughted and were subsequently rewatered, i.e. the inducible component was proven to be reversible. Gas-exchange measurements complemented the determinations of acidity. In all species, net CO2 uptake was restricted to the light in well-watered plants, and cessation of watering was followed by a progressive reduction of CO2 uptake in the light and a reduction in nocturnal CO2 efflux. In C. creethiae, C. pentavalvis and C. reticulata net CO2 assimilation was eventually observed in the dark, whereas in C. quadrivalvis nocturnal CO2 exchange approached the compensation point but did not transition to net CO2 gain. Following rewatering, all species returned to their original well-watered CO2 exchange pattern of net CO2 uptake restricted solely to the light. In addition to facultative CAM, C. quadrivalvis and C. reticulata exhibited an extremely small constitutive CAM component as demonstrated by the nocturnal accumulation in well-watered plants of small amounts of acidity and by the curved pattern of the nocturnal course of CO2 efflux. It is suggested that low-level CAM and facultative CAM are more common within the Australian succulent flora, and perhaps the world succulent flora, than has been previously assumed.


Asunto(s)
Fotosíntesis/fisiología , Australia , Dióxido de Carbono/metabolismo , Ritmo Circadiano , Crassulaceae/metabolismo , Crassulaceae/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
14.
J Plant Physiol ; 214: 91-96, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28511087

RESUMEN

Low levels of crassulacean acid metabolism (CAM) are demonstrated in two species with C4 photosynthesis, Portulaca cyclophylla and P. digyna. The expression of CAM in P. cyclophylla and P. digyna is facultative, i.e. optional. Well-watered plants did not accumulate acid at night and exhibited gas-exchange patterns consistent with C4 photosynthesis. CAM-type nocturnal acidification was reversible in that it was induced following drought and lost when droughted plants were rewatered. In P. cyclophylla, droughting was accompanied by a small but discernible net uptake of CO2 during the dark, whereas in P. digyna, net CO2 exchange at night approached the CO2 compensation point but did not transition beyond it. This report brings the number of known C4 species with a capacity for expressing CAM to six. All are species of Portulaca. The observation of CAM in P. cyclophylla and P. digyna is the first for species in the opposite-leaved (OL) Portulacelloid-anatomy lineage of Portulaca and for the Australian clade therein. The other four species are within the alternate-leaved (AL) lineage, in the Atriploid-anatomy Oleracea and the Pilosoid-anatomy Pilosa clades. Studies of the evolutionary origins of C4 and CAM in Portulaca will benefit from a more wide-range survey of CAM across its species, particularly in the C3-C4 intermediate-containing Cryptopetala clade.


Asunto(s)
Fotosíntesis/fisiología , Portulaca/metabolismo , Ciclo del Carbono/fisiología , Dióxido de Carbono/metabolismo , Sequías , Fotosíntesis/genética , Portulaca/fisiología
15.
Mol Phylogenet Evol ; 94(Pt B): 635-657, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26493224

RESUMEN

The generic classification of huperzioid Lycopodiaceae was tested using Bayesian inference and Maximum likelihood phylogenetic analyses of DNA sequences from four chloroplast loci for 119 taxa and optimisation of 29 morphological characteristics onto the phylogeny. Consistent with previous studies, the subfamilies Lycopodioideae and Huperzioideae are monophyletic and diagnosable by synapomorphies that correlate with differences in their life-histories. Within the Huperzioideae, the monophyly of the widely adopted genus Huperzia (excl. Phylloglossum) is poorly supported. Three clades of huperzioid Lycopodiaceae were recovered in all analyses of molecular data: Phylloglossum drummondii, Huperzia sensu stricto and Phlegmariurus sensu lato. These clades are strongly supported by morphological characters, including differences in spores, gametophytes, sporophyte macro-morphology, as well as growth habit and life-histories. Our findings indicate that either a one-genus (Huperzia s.l.) or a three-genus (Phylloglossum, Huperzia s.s. and Phlegmariurus s.l.) classification of huperzioid Lycopods are equally supported by molecular evidence, but a two-genus system (Huperzia s.l.+Phylloglossum) is not. We recommend recognising three genera in the huperzioid Lycopodiaceae, as this classification best reflects evolutionary, ecological, and morphological divergence within the lineage.


Asunto(s)
ADN de Plantas/genética , Huperzia/clasificación , Filogenia , Teorema de Bayes , Evolución Biológica , Huperzia/genética , Funciones de Verosimilitud , Análisis de Secuencia de ADN
16.
Plant Cell Environ ; 39(5): 1087-102, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26715126

RESUMEN

Leaf water contains naturally occurring stable isotopes of oxygen and hydrogen in abundances that vary spatially and temporally. When sufficiently understood, these can be harnessed for a wide range of applications. Here, we review the current state of knowledge of stable isotope enrichment of leaf water, and its relevance for isotopic signals incorporated into plant organic matter and atmospheric gases. Models describing evaporative enrichment of leaf water have become increasingly complex over time, reflecting enhanced spatial and temporal resolution. We recommend that practitioners choose a model with a level of complexity suited to their application, and provide guidance. At the same time, there exists some lingering uncertainty about the biophysical processes relevant to patterns of isotopic enrichment in leaf water. An important goal for future research is to link observed variations in isotopic composition to specific anatomical and physiological features of leaves that reflect differences in hydraulic design. New measurement techniques are developing rapidly, enabling determinations of both transpired and leaf water δ(18) O and δ(2) H to be made more easily and at higher temporal resolution than previously possible. We expect these technological advances to spur new developments in our understanding of patterns of stable isotope fractionation in leaf water.


Asunto(s)
Hojas de la Planta/fisiología , Plantas/metabolismo , Agua/metabolismo , Isótopos de Oxígeno , Transpiración de Plantas/fisiología
17.
PLoS One ; 10(8): e0135382, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26305101

RESUMEN

Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production. Agave leaf cell wall polysaccharide content was characterized by linkage analysis, non-cellulosic polysaccharides such as pectins were observed by immuno-microscopy, and leaf juice composition was determined by liquid chromatography. Agave leaves are fruit-like--rich in moisture, soluble sugars and pectin. The dry leaf fiber was composed of crystalline cellulose (47-50% w/w) and non-cellulosic polysaccharides (16-22% w/w), and whole leaves were low in lignin (9-13% w/w). Of the dry mass of whole Agave leaves, 85-95% consisted of soluble sugars, cellulose, non-cellulosic polysaccharides, lignin, acetate, protein and minerals. Juice pressed from the Agave leaves accounted for 69% of the fresh weight and was rich in glucose and fructose. Hydrolysis of the fructan oligosaccharides doubled the amount of fermentable fructose in A. tequilana leaf juice samples and the concentration of fermentable hexose sugars was 41-48 g/L. In agricultural production systems such as the tequila making, Agave leaves are discarded as waste. Theoretically, up to 4000 L/ha/yr of bioethanol could be produced from juice extracted from waste Agave leaves. Using standard Saccharomyces cerevisiae strains to ferment Agave juice, we observed ethanol yields that were 66% of the theoretical yields. These data indicate that Agave could rival currently used bioethanol feedstocks, particularly if the fermentation organisms and conditions were adapted to suit Agave leaf composition.


Asunto(s)
Agave/química , Celulosa/química , Hojas de la Planta/química , Energía Renovable , Agave/metabolismo , Biomasa , Fermentación , Hidrólisis , Lignina/química , Hojas de la Planta/metabolismo , Polisacáridos/química
18.
PLoS One ; 10(6): e0130799, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26087009

RESUMEN

Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species' hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios.


Asunto(s)
Cambio Climático , Bosque Lluvioso , Árboles/fisiología , Agua/metabolismo , Australia , Sequías , Modelos Biológicos , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Tallos de la Planta/anatomía & histología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Transpiración de Plantas , Árboles/anatomía & histología , Árboles/crecimiento & desarrollo , Clima Tropical
19.
New Phytol ; 208(1): 73-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25975197

RESUMEN

The key components of crassulacean acid metabolism (CAM) - nocturnal fixation of atmospheric CO2 and its processing via Rubisco in the subsequent light period - are now reasonably well understood in terms of the biochemical reactions defining this water-saving mode of carbon assimilation. Phenotypically, however, the degree to which plants engage in the CAM cycle relative to regular C3 photosynthesis is highly variable. Depending upon species, ontogeny and environment, the contribution of nocturnal CO2 fixation to 24-h carbon gain can range continuously from close to 0% to 100%. Nevertheless, not all possible combinations of light and dark CO2 fixation appear equally common. Large-scale surveys of carbon-isotope ratios typically show a strongly bimodal frequency distribution, with relatively few intermediate values. Recent research has revealed that many species capable of low-level CAM activity are nested within the peak of C3 -type isotope signatures. While questions remain concerning the adaptive significance of dark CO2 fixation in such species, plants with low-level CAM should prove valuable models for investigating the discrete changes in genetic architecture and gene expression that have enabled the evolutionary transition from C3 to CAM.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Carbono/metabolismo , Fenotipo , Fotosíntesis , Plantas , Agua/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Ecosistema , Genoma de Planta , Luz , Transpiración de Plantas , Plantas/genética , Plantas/metabolismo
20.
Funct Plant Biol ; 42(8): 711-717, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32480714

RESUMEN

Jatropha curcas L. is a drought-tolerant shrub or small tree that is a candidate bioenergy feedstock. It is a member of the family Euphorbiaceae in which both CAM and C4 photosynthesis have evolved. Here, we report that J. curcas exhibits features diagnostic of low-level CAM. Small increases in nocturnal acid content were consistently observed in photosynthetic stems and occasionally in leaves. Acidification was associated with transient contractions in CO2 loss at night rather than with net CO2 dark fixation. Although the CAM-type nocturnal CO2 uptake signal was masked by background respiration, estimates of dark CO2 fixation based upon the 2:1 stoichiometric relationship between H+ accumulated and CO2 fixed indicated substantial carbon retention in the stems via the CAM cycle. It is proposed that under conditions of drought, low-level CAM in J. curcas stems serves primarily to conserve carbon rather than water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...